The Surprising Connections Between Maths And Poetry

From the Fibonacci sequence to the Bell numbers, there is more overlap between mathematics and poetry than you might think, says Peter Rowlett, who has found his inner poet.

People like to position maths as cold, hard logic, quite distinct from creative pursuits. Actually, maths often involves a great deal of creativity. As mathematician Sofya Kovalevskaya wrote, “It is impossible to be a mathematician without being a poet in soul.” Poetry is often constrained by rules, and these add to, rather than detract from, its creativity.

Rhyming poems generally follow a scheme formed by giving each line a letter, so that lines with matching letters rhyme. This verse from a poem by A. A. Milne uses an ABAB scheme:

What shall I call
My dear little dormouse?
His eyes are small,
But his tail is e-nor-mouse
.

In poetry, as in maths, it is important to understand the rules well enough to know when it is okay to break them. “Enormous” doesn’t rhyme with “dormouse”, but using a nonsense word preserves the rhyme while enhancing the playfulness.

There are lots of rhyme schemes. We can count up all the possibilities for any number of lines using what are known as the Bell numbers. These count the ways of dividing up a set of objects into smaller groupings. Two lines can either rhyme or not, so AA and AB are the only two possibilities. With three lines, we have five: AAA, ABB, ABA, AAB, ABC. With four, there are 15 schemes. And for five lines there are 52 possible rhyme schemes!

Maths is also at play in Sanskrit poetry, in which syllables have different weights. “Laghu” (light) syllables take one unit of metre to pronounce, and “guru” (heavy) syllables take two units. There are two ways to arrange a line of two units: laghu-laghu, or guru. There are three ways for a line of three units: laghu-laghu-laghu; laghu-guru; and guru-laghu. For a line of four units, we can add guru to all the ways to arrange two units or add laghu to all the ways to arrange three units, yielding five possibilities in total. As the number of arrangements for each length is counted by adding those of the previous two, these schemes correspond with Fibonacci numbers.

Not all poetry rhymes, and there are many ways to constrain writing. The haiku is a poem of three lines with five, seven and five syllables, respectively – as seen in an innovative street safety campaign in New York City, above.

Some creative mathematicians have come up with the idea of a π-ku (pi-ku) based on π, which can be approximated as 3.14. This is a three-line poem with three syllables on the first line, one on the second and four on the third. Perhaps you can come up with your own π-ku – here is my attempt, dreamt up in the garden:

White seeds float,
dance,
spinning around
.

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Peter Rowlett


How Mathematics Can Help You Divide Anything Up Fairly

Whether you are sharing a cake or a coastline, maths can help make sure everyone is happy with their cut, says Katie Steckles.

One big challenge in life is dividing things fairly. From sharing a tasty snack to allocating resources between nations, having a strategy to divvy things up equitably will make everyone a little happier.

But it gets complicated when the thing you are dividing isn’t an indistinguishable substance: maybe the cake you are sharing has a cherry on top, and the piece with the cherry (or the area of coastline with good fish stocks) is more desirable. Luckily, maths – specifically game theory, which deals with strategy and decision-making when people interact – has some ideas.

When splitting between two parties, you might know a simple rule, proven to be mathematically optimal: I cut, you choose. One person divides the cake (or whatever it is) and the other gets to pick which piece they prefer.

Since the person cutting the cake doesn’t choose which piece they get, they are incentivised to cut the cake fairly. Then when the other person chooses, everyone is satisfied – the cutter would be equally happy with either piece, and the chooser gets their favourite of the two options.

This results in what is called an envy-free allocation – neither participant can claim they would rather have the other person’s share. This also takes care of the problem of non-homogeneous objects: if some parts of the cake are more desirable, the cutter can position their cut so the two pieces are equal in value to them.

What if there are more people? It is more complicated, but still possible, to produce an envy-free allocation with several so-called fair-sharing algorithms.

Let’s say Ali, Blake and Chris are sharing a cake three ways. Ali cuts the cake into three pieces, equal in value to her. Then Blake judges if there are at least two pieces he would be happy with. If Blake says yes, Chris chooses a piece (happily, since he gets free choice); Blake chooses next, pleased to get one of the two pieces he liked, followed by Ali, who would be satisfied with any of the pieces. If Blake doesn’t think Ali’s split was equitable, Chris looks to see if there are two pieces he would take. If yes, Blake picks first, then Chris, then Ali.

If both Blake and Chris reject Ali’s initial chop, then there must be at least one piece they both thought was no good. This piece goes to Ali – who is still happy, because she thought the pieces were all fine – and the remaining two pieces get smooshed back together (that is a mathematical term) to create one piece of cake for Blake and Chris to perform “I cut, you choose” on.

While this seems long-winded, it ensures mathematically optimal sharing – and while it does get even more complicated, it can be extended to larger groups. So whether you are sharing a treat or a divorce settlement, maths can help prevent arguments.

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Katie Steckles*


The Central Limit Theorem

The central limit theorem – the idea that plotting statistics for a large enough number of samples from a single population will result in a normal distribution – forms the basis of the majority of the inferential statistics that students learn in advanced school-level maths courses. Because of this, it’s a concept not normally encountered until students are much older. In our work on the Framework, however, we always ask ourselves where the ideas that make up a particular concept begin. And are there things we could do earlier in school that will help support those more advanced concepts further down the educational road?

The central limit theorem is an excellent example of just how powerful this way of thinking can be, as the key ideas on which it is built are encountered by students much earlier, and with a little tweaking, they can support deeper conceptual understanding at all stages.

The key underlying concept is that of a sampling distribution, which is a theoretical distribution that arises from taking a very large number of samples from a single population and calculating a statistic – for example, the mean – for each one. There is an immediate problem encountered by students here which relates to the two possible ways in which a sample can be conceptualised. It is common for students to consider a sample as a “mini-population;” this is often known as an additive conception of samples and comes from the common language use of the word, where a free “sample” from a homogeneous block of cheese is effectively identical to the block from which it came. If students have this conception, then a sampling distribution makes no sense as every sample is functionally identical; furthermore, hypothesis tests are problematic as every random sample is equally valid and should give us a similar estimate of any population parameter.

A multiplicative conception of a sample is, therefore, necessary to understand inferential statistics; in this frame, a sample is viewed as one possible outcome from a set of possible but different outcomes. This conception is more closely related to ideas of probability and, in fact, can be built from some simple ideas of combinatorics. In a very real sense, the sampling distribution is actually the sample space of possible samples of size n from a given population. So, how can we establish a multiplicative view of samples early on so that students who do go on to advanced study do not need to reconceptualise what a sample is in order to avoid misconceptions and access the new mathematics?

One possible approach is to begin by exploring a small data set by considering the following:

“Imagine you want to know something about six people, but you only have time to actually ask four of them. How many different combinations of four people are there?”

There are lots of ways to explore this question that make it more concrete – perhaps by giving a list of names of the people along with some characteristics, such as number of siblings, hair colour, method of travel to school, and so on. Early explorations could focus on simply establishing that there are in fact 15 possible samples of size four through a systematic listing and other potentially more creative representations, but then more detailed questions could be asked that focus on the characteristics of the samples; for example, is it common that three of the people in the sample have blonde hair? Is an even split between blue and brown eyes more or less common? How might these things change if a different population of six people was used?

Additionally, there are opportunities to practise procedures within a more interesting framework; for example, if one of the characteristics was height then students could calculate the mean height for each of their samples – a chance to practise the calculation as part of a meaningful activity – and then examine this set of averages. Are they close to a particular value? What range of values are covered? How are these values clustered? Hey presto – we have our first sampling distribution without having to worry about the messy terminology and formal definitions.

In the Cambridge Mathematics Framework, this approach is structured as exploratory work in which students play with the idea of a small sample as a combinatorics problem in order to motivate further exploration. Following this early work, they eventually created their first sampling distribution for a more realistic population and explored its properties such as shape, spread, proportions, etc. This early work lays the ground to look at sampling from some specific population distributions – uniform, normal, and triangular – to get a sense of how the underlying distribution impacts the sampling distribution. Finally, this is brought together by using technology to simulate the sampling distribution for different empirical data sets using varying sizes of samples in order to establish the concept of the central limit theorem.

While sampling distributions and the central limit theorem may well remain the preserve of more advanced mathematics courses, considering how to establish the multiplicative concept of a sample at the very beginning of students’ work on sampling may well help lay more secure foundations for much of the inferential statistics that comes later, and may even support statistical literacy for those who don’t go on to learn more formal statistical techniques.

For more insights like this, visit our website at www.international-maths-challenge.com.

Credit for the article given to Darren Macey