Some Notes on Taking Notes

I am often asked the question, “How do you do it?!” Now while I don’t think my note-taking strategy is particularly special, I am happy to share! I’ll preface the information by stating what you probably already know: I LOVE to write.* I am a very visual learner and often need to go through the physical act of writing things down in order for information to “stick.” So while some people think aloud (or quietly),

I think on paper.

My study habits, then, are built on this fact. Of course not everyone learns in this way, so this post is not intended to be a how-to guide. It’s just a here’s-what-I-do guide.

With that said, below is a step-by-step process I tried to follow during my final years of undergrad and first two years of grad school.**

‍Step 1

Read the appropriate chapter/section in the book before class

I am an “active reader,” so my books have tons of scribbles, underlines, questions, and “aha” moments written on the pages. I like to write while I read because it gives me time to pause and think about the material. For me, reading a mathematical text is not like reading a novel. It often takes me a long time just to understand a single paragraph! Or a single sentence. I also like to mark things that I don’t understand so I’ll know what to look for in the upcoming lecture.

STEP 2

Attend lecture and take notes

This step is pretty self-explanatory, but I will mention this: I write down much more than what is written on the chalkboard (or whiteboard). In fact, a good portion of my in-class notes consists of what the professor has said but hasn’t written.

‍My arsenal

‍STEP 3

Rewrite lecture notes at home

My in-class notes are often an incomprehensible mess of frantically-scribbled hieroglyphs. So when I go home, I like to rewrite everything in a more organized fashion. This gives the information time to simmer and marinate in my brain. I’m able to ponder each statement at my own pace, fill in any gaps, and/or work through any exercises the professor might have suggested. I’ll also refer back to the textbook as needed.

Sometimes while rewriting these notes, I’ll copy things word-for-word (either from the lecture, the textbook, or both), especially if the material is very new or very dense. Although this can be redundant, it helps me slow down and lets me think about what the ideas really mean. Other times I’ll just rewrite things in my own words in a way that makes sense to me.

A semester’s worth of notes!

 

As for the content itself, my notes usually follow a “definition then theorem then proof” outline, simply because that’s how material is often presented in the lecture. But sometimes it’s hard to see the forest for the trees (i.e. it’s easy to get lost in the details), so I’ll occasionally write “PAUSE!” or “KEY IDEA!” in the middle of the page. I’ll then take the time to write a mini exposition that summarizes the main idea of the previous pages. I’ve found this to be especially helpful when looking back at my notes after several months (or years) have gone by. I may not have time to read all the details/calculations, so it’s nice to glance at a summary for a quick refresher.

And every now and then, I’ll rewrite my rewritten notes in the form of a SaiBlog post! Many of my earlier posts here at Math3ma were “aha” moments that are now engrained in my brain because I took the time to SaiBlog about them.

STEP 4

Do homework problems

Once upon a time, I used to think the following:

How can I do problems if I haven’t spent a bajillion hours learning the theory first?

But now I believe there’s something to be said for the converse: 

How can I understand the theory if I haven’t done a bajillion examples first?

In other words, taking good notes and understanding theory is one thing, but putting that theory into practice is a completely different beast. As a wise person once said, “The only way to learn math is to DO math.” So although I’ve listed “do homework problems” as the last step, I think it’s really first in terms of priority.

Typically, then, I’ll make a short to-do list (which includes homework assignments along with other study-related duties) each morning. And I’ll give myself a time limit for each task. For example, something like “geometry HW, 3 hours” might appear on my list, whereas “do geometry today” will not. Setting a time gives me a goal to reach for which helps me stay focused. And I may be tricking my brain here, but a specific, three-hour assignment sounds much less daunting than an unspecified, all-day task. (Of course, my lists always contain multiple items that take several hours each, but as the old adage goes, “How do you eat an elephant? One bite at a time.”)

By the way, in my first two years of grad school I often worked with my classmates on homework problems. I didn’t do this in college, but in grad school I’ve found it tricky to digest all the material alone – there’s just too much of it! So typically I’d first attempt exercises on my own, then meet up with a classmate or two to discuss our ideas and solutions and perhaps attend office hours with any questions.

As far as storage goes, I have a huge binder that contains all of my rewritten notes*** from my first and second year classes. (I use sheet protectors to keep them organized according to subject.) On the other hard, I use a paper tray like this one to store my lecture notes while the semester is in progress. Once classes are over, I’ll scan and save them to an external hard drive. I’ve also scanned and saved all my homework assignments.

Well, I think that’s about it! As I mentioned earlier, these steps were only my ideal plan. I often couldn’t apply them to every class — there’s just not enough time! — so I’d only do it for my more difficult courses. And even then, there might not be enough time for steps 1 and 3, and I’d have to start working on homework right after a lecture.

But as my advisor recently told me,”It’s okay to not know everything.” Indeed, I think the main thing is to just do something. Anything. As much as you can. And as time goes on, you realize you really are learning something, even if it doesn’t feel like it at the time.

Alright, friends, I think that’s all I have to share. I hope it was somewhat informative. If you have any questions, don’t hesitate to leave it in a comment below!

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Tai-Danae Bradley*


How The Maths Behind Honeycombs Can Help You Work A Jigsaw Puzzle

Maths tells us the best way to cover a surface with copies of a shape – even when it comes to jigsaw puzzles, says Katie Steckles.

WHAT do a bathroom wall, a honeycomb and a jigsaw puzzle have in common? Obviously, the answer is mathematics.

If you are trying to cover a surface with copies of a shape – say, for example, you are tiling a bathroom – you ideally want a shape like a square or rectangle. They will cover the whole surface with no gaps, which is why these boring shapes get used as wall tiles so often.

But if your shapes don’t fit together exactly, you can still try to get the best coverage possible by arranging them in an efficient way.

Imagine trying to cover a surface with circular coins. The roundness of the circles means there will be gaps between them. For example, we could use a square grid, placing the coins on the intersections. This will cover about 78.5 per cent of the area.

But this isn’t the most efficient way: in 1773, mathematician Joseph-Louis Lagrange showed that the optimal arrangement of circles involves a hexagonal grid, like the cells in a regular honeycomb – neat rows where each circle sits nestled between the two below it.

In this situation, the circles will cover around 90.7 per cent of the space, which is the best you can achieve with this shape. If you ever need to cover a surface with same-size circles, or pack identical round things into a tray, the hexagon arrangement is the way to go.

But this isn’t just useful knowledge if you are a bee: a recent research paper used this hexagonal arrangement to figure out the optimal size table for working a jigsaw puzzle. The researchers calculated how much space would be needed to lay out the pieces of an unsolved jigsaw puzzle, relative to the solved version. Puzzle pieces aren’t circular, but they can be in any orientation and the tabs sticking out stop them from moving closer together, so each takes up a theoretically circular space on the table.

By comparing the size of the central rectangular section of the jigsaw piece to the area it would take up in the hexagonal arrangement, the paper concluded that an unsolved puzzle takes up around 1.73 times as much space.

This is the square root of three (√3), a number with close connections to the regular hexagon – one with a side length of 1 will have a height of √3. Consequently, there is also a √3 in the formula for the hexagon’s area, which is 3/2 × √3 × s2, where s is the length of a side. This is partly why it pops out, after some fortuitous cancellation, as the answer here.

So if you know the dimensions of a completed jigsaw puzzle, you can figure out what size table you need to lay out all the pieces: multiply the width and height, then multiply that by 1.73. For this ingenious insight, we can thank the bees.

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Katie Steckles*


False Positives in Probability

There are plenty of probability problems that have counter-intuitive solutions. Problems like these, and how they can undermine common sense, are among the best reasons for looking at probability theory. One set of humbling questions is the family of Monty Hall problems. Another are those related to conditional probability; nice examples of these are problems that involve medical tests that give ‘false positive’ results.

Simulation is a way of exploring these problems that reveals more than mere theoretical probability calculations do. The structure of the simulation can reflect interesting aspects of the structure of the original problem, and the results reveal a variability that is not apparent when you simply calculate the theoretical probabilities on their own.

This post shows an example of a ‘false positive’ probability problem and a Fathom simulation for it. This problem was adapted from one found in the 4th edition of Ross’s A First Course in Probability (p.75):

A laboratory blood test is 95 percent effective in detecting a certain disease when it is, in fact, present. However, the test also yields a “false positive” result for one percent of healthy persons. (That is, if a healthy person is tested, there is a 0.01 probability that they will test positive for the disease, even though they don’t really have it.) If 0.5 percent of the population actually has the disease, what is the probability that a person who has a positive test result actually has the disease?

Here are the attribute definitions that you could use to build a Fathom simulation for this problem:

The attributes are enough to run the simulation, but it is better to also add the following measures:

To run the simulation you can add new cases (try ~500). Using a measures collection, you can re-run this experiment hundreds of times (collecting a 100 measures re-runs the 500 person experiment 100 times).

If you are calculating the theoretical probability by hand, it helps to write down all of the probabilities (fill in the blanks…):

It also helps to visualize the probabilities in a tree diagram:

The outer tips of the tree are filled in using the multiplicative rule for conditional probabilities:

One nice thing about doing this is that you can see how the tree diagram used to calculate the theoretical probabilities is structured in the same way as the “if” statements in the simulation.

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to dan.mackinnon*


What The Mathematics of Knots Reveals About The Shape of The Universe

Knot theory is linked to many other branches of science, including those that tell us about the cosmos.

The mathematical study of knots started with a mistake. In the 1800s, mathematician and physicist William Thomson, also known as Lord Kelvin, suggested that the elemental building blocks of matter were knotted vortices in the ether: invisible microscopic currents in the background material of the universe. His theory dropped by the wayside fairly quickly, but this first attempt to classify how curves could be knotted grew into the modern mathematical field of knot theory. Today, knot theory is not only connected to many branches of theoretical mathematics but also to other parts of science, like physics and molecular biology. It’s not obvious what your shoelace has to do with the shape of the universe, but the two may be more closely related than you think.

As it turns out, a tangled necklace offers a better model of a knot than a shoelace: to a mathematician, a knot is a loop in three-dimensional space rather than a string with loose ends. Just as a physical loop of string can stretch and twist and rotate, so can a mathematical knot – these loops are floppy rather than fixed. If we studied strings with free ends, they could wiggle around and untie themselves, but a loop stays knotted unless it’s cut.

Most questions in knot theory come in two varieties: sorting knots into classes and using knots to study other mathematical objects. I’ll try to give a flavour of both, starting with the simplest possible example: the unknot.

Draw a circle on a piece of paper. Congratulations, you’ve just constructed an unknot! This is the name for any loop in three-dimensional space that is the boundary of a disc. When you draw a circle on a piece of paper, you can see this disc as the space inside the circle, and your curve continues to be an unknot if you crumple the paper up, toss it through the air, flatten it out and then do some origami. As long as the disc is intact, no matter how distorted, the boundary is always an unknot.

Things get more interesting when you start with just the curve. How can you tell if it’s an unknot? There may secretly be a disc that can fill in the loop, but with no limits on how deformed the disc could be, it’s not clear how you can figure this out.

Two unknots

It turns out that this question is both hard and important: the first step in studying complicated objects is distinguishing them from simple ones. It’s also a question that gets answered inside certain bacterial cells each time they replicate. In the nuclei of these cells, the DNA forms a loop, rather than a strand with loose ends, and sometimes these loops end up knotted. However, the DNA can replicate only when the loop is an unknot, so the basic life processes of the cell require a process for turning a potentially complicated loop into an unknotted one.

A class of proteins called topoisomerases unknot tangled loops of DNA by cutting a strand, moving the free ends and then reattaching them. In a mathematical context, this operation is called a “crossing change”, and it’s known that any loop can be turned into the unknot by some number of crossing changes. However, there’s a puzzle in this process, since random crossing changes are unlikely to simplify a knot. Each topoisomerase operates locally, but collectively they’re able to reliably unknot the DNA for replication. Topoisomerases were discovered more than 50 years ago, but biologists are still studying how they unknot DNA so effectively.

When mathematicians want to identify a knot, they don’t turn to a protein to unknot it for them.  Instead, they rely on invariants, mathematical objects associated with knots. Some invariants are familiar things like numbers, while others are elaborate algebraic structures. The best invariants have two properties: they’re practical to compute, given the input of a specific knot, and they distinguish many different classes of knots from each other. It’s easy to define an invariant with only one of these properties, but a computable and effective knot invariant is a rare find.

The modern era of knot theory began with the introduction of an invariant called the Jones Polynomial in the 1980s. Vaughan Jones was studying statistical mechanics when he discovered a process that assigns a polynomial – a type of simple algebraic expression – to any knot. The method he used was technical, but the essential feature is that no amount of wiggling, stretching or twisting changes the output. The Jones Polynomial of an unknot is 1, no matter how complicated the associated disc might be.

Jones’s discovery caught the attention of other researchers, who found simpler techniques for computing the same polynomial. The result was an invariant that satisfies both the conditions listed above: the Jones Polynomial can be computed from a drawing of a knot on paper, and many thousands of knots can be distinguished by the fact that they have different Jones Polynomials.

However, there are still many things we don’t know about the Jones Polynomial, and one of the most tantalising questions is which knots it can detect. Most invariants distinguish some knots while lumping others together, and we say an invariant detects a knot if all the examples sharing a certain value are actually deformations of each other. There are certainly pairs of distinct knots with the same Jones Polynomial, but after decades of study, we still don’t know whether any knot besides the unknot has the polynomial 1. With computer assistance, experts have examined nearly 60 trillion examples of distinct knots without finding any new knots whose Jones Polynomials equal 1.

The Jones Polynomial has applications beyond knot detection. To see this, let’s return to the definition of an unknot as a loop that bounds a disc. In fact, every knot is the boundary of some surface – what distinguishes an unknot is that this surface is particularly simple. There’s a precise way to rank the complexity of surfaces, and we can use this to rank the complexity of knots. In this classification, the simplest knot is the unknot, and the second simplest is the trefoil, which is shown below.

Trefoil knot

To build a surface with a trefoil boundary, start with a strip of paper. Twist it three times and then glue the ends together. This is more complicated than a disc, but still pretty simple. It also gives us a new question to investigate: given an arbitrary knot, where does it fit in the ranking of knot complexity? What’s the simplest surface it can bound? Starting with a curve and then hunting for a surface may seem backwards, but in some settings, the Jones Polynomial answers this question: the coefficients of the knot polynomial can be used to estimate the complexity of the surfaces it bounds.

Joan Licata

Knots also help us classify other mathematical objects. We can visually distinguish the two-dimensional surface of sphere from the surface a torus (the shape of a ring donut), but an ant walking on one of these surfaces might need knot theory to tell them apart. On the surface of a torus, there are loops that can’t be pulled any tighter, while any loop lying on a sphere can contract to a point.

We live inside a universe of three physical dimensions, so like the ant on a surface, we lack a bird’s eye view that could help us identify its global shape. However, we can ask the analogous question: can each loop we encounter shrink without breaking, or is there a shortest representative? Mathematicians can classify three-dimensional spaces by the existence of the shortest knots they contain. Presently, we don’t know if some knots twisting through the universe are unfathomably long or if every knot can be made as small as one of Lord Kelvin’s knotted vortices.

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Joan Licata*


How Mathematics Can Help You Divide Anything Up Fairly

Whether you are sharing a cake or a coastline, maths can help make sure everyone is happy with their cut, says Katie Steckles.

One big challenge in life is dividing things fairly. From sharing a tasty snack to allocating resources between nations, having a strategy to divvy things up equitably will make everyone a little happier.

But it gets complicated when the thing you are dividing isn’t an indistinguishable substance: maybe the cake you are sharing has a cherry on top, and the piece with the cherry (or the area of coastline with good fish stocks) is more desirable. Luckily, maths – specifically game theory, which deals with strategy and decision-making when people interact – has some ideas.

When splitting between two parties, you might know a simple rule, proven to be mathematically optimal: I cut, you choose. One person divides the cake (or whatever it is) and the other gets to pick which piece they prefer.

Since the person cutting the cake doesn’t choose which piece they get, they are incentivised to cut the cake fairly. Then when the other person chooses, everyone is satisfied – the cutter would be equally happy with either piece, and the chooser gets their favourite of the two options.

This results in what is called an envy-free allocation – neither participant can claim they would rather have the other person’s share. This also takes care of the problem of non-homogeneous objects: if some parts of the cake are more desirable, the cutter can position their cut so the two pieces are equal in value to them.

What if there are more people? It is more complicated, but still possible, to produce an envy-free allocation with several so-called fair-sharing algorithms.

Let’s say Ali, Blake and Chris are sharing a cake three ways. Ali cuts the cake into three pieces, equal in value to her. Then Blake judges if there are at least two pieces he would be happy with. If Blake says yes, Chris chooses a piece (happily, since he gets free choice); Blake chooses next, pleased to get one of the two pieces he liked, followed by Ali, who would be satisfied with any of the pieces. If Blake doesn’t think Ali’s split was equitable, Chris looks to see if there are two pieces he would take. If yes, Blake picks first, then Chris, then Ali.

If both Blake and Chris reject Ali’s initial chop, then there must be at least one piece they both thought was no good. This piece goes to Ali – who is still happy, because she thought the pieces were all fine – and the remaining two pieces get smooshed back together (that is a mathematical term) to create one piece of cake for Blake and Chris to perform “I cut, you choose” on.

While this seems long-winded, it ensures mathematically optimal sharing – and while it does get even more complicated, it can be extended to larger groups. So whether you are sharing a treat or a divorce settlement, maths can help prevent arguments.

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Katie Steckles*


Mathematicians Find 27 Tickets That Guarantee UK National Lottery Win

Buying a specific set of 27 tickets for the UK National Lottery will mathematically guarantee that you win something.

Buying 27 tickets ensures a win in the UK National Lottery

You can guarantee a win in every draw of the UK National Lottery by buying just 27 tickets, say a pair of mathematicians – but you won’t necessarily make a profit.

While there are many variations of lottery in the UK, players in the standard “Lotto” choose six numbers from 1 to 59, paying £2 per ticket. Six numbers are randomly drawn and prizes are awarded for tickets matching two or more.

David Cushing and David Stewart at the University of Manchester, UK, claim that despite there being 45,057,474 combinations of draws, it is possible to guarantee a win with just 27 specific tickets. They say this is the optimal number, as the same can’t be guaranteed with 26.

The proof of their idea relies on a mathematical field called finite geometry and involves placing each of the numbers from 1 to 59 in pairs or triplets on a point within one of five geometrical shapes, then using these to generate lottery tickets based on the lines within the shapes. The five shapes offer 27 such lines, meaning that 27 tickets bought using those numbers, at a cost of £54, will hit every possible winning combination of two numbers.

The 27 tickets that guarantee a win on the UK National Lottery

Their research yielded a specific list of 27 tickets (see above), but they say subsequent work has shown that there are two other combinations of 27 tickets that will also guarantee a win.

“We’ve been thinking about this problem for a few months. I can’t really explain the thought process behind it,” says Cushing. “I was on a train to Manchester and saw this [shape] and that’s the best logical [explanation] I can give.”

Looking at the winning numbers from the 21 June Lotto draw, the pair found their method would have won £1810. But the same numbers played on 1 July would have matched just two balls on three of the tickets – still a technical win, but giving a prize of just three “lucky dip” tries on a subsequent lottery, each of which came to nothing.

Stewart says proving that 27 tickets could guarantee a win was the easiest part of the research, while proving it is impossible to guarantee a win with 26 was far trickier. He estimates that the number of calculations needed to verify that would be 10165, far more than the number of atoms in the universe. “There’d be absolutely no way to brute force this,” he says.

The solution was a computer programming language called Prolog, developed in France in 1971, which Stewart says is the “hero of the story”. Unlike traditional computer languages where a coder sets out precisely what a machine should do, step by step, Prolog instead takes a list of known facts surrounding a problem and works on its own to deduce whether or not a solution is possible. It takes these facts and builds on them or combines them in order to slowly understand the problem and whittle down the array of possible solutions.

“You end up with very, very elegant-looking programs,” says Stewart. “But they are quite temperamental.”

Cushing says the research shouldn’t be taken as a reason to gamble more, particularly as it doesn’t guarantee a profit, but hopes instead that it encourages other researchers to delve into using Prolog on thorny mathematical problems.

A spokesperson from Camelot, the company that operates the lottery, told New Scientist that the paper made for “interesting reading”.

“Our approach has always been to have lots of people playing a little, with players individually spending small amounts on our games,” they say. “It’s also important to bear in mind that, ultimately, Lotto is a lottery. Like all other National Lottery draw-based games, all of the winning Lotto numbers are chosen at random – any one number has the same and equal chance of being drawn as any other, and every line of numbers entered into a draw has the same and equal chance of winning as any other.”

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Matthew Sparkes*


Knot tiles

Knot patterns (which might not actually represent knots, but just braids or plaits), like the one shown here, are common in Celtic design.

One way to create knot patterns is to use a set of tiles that are put together following a few basic rules. This is not, as far as I know, a standard way to create these patterns – the book by Aidan Meehan, provides a technique for drawing the patterns by hand, rather than laying them out as tiles.

A wide range of knot patterns, including the one shown above, can be created using the set of six tiles shown below. These were constructed using Geometer’s Sketchpad.

The rules for putting these together are reasonably clear, but can be formalized. You can even come up with a notation for the tiles and formal rules for assembling them into knot patterns.

When laying down the tiles, you have the option of rotating them – some of the tiles don’t alter with rotation, some of them can be placed in two ways, some in four.

A nice property of this set is that you can’t paint yourself into a corner when using it – you can always find a tile that will compose with the pattern that you have started. This property means that this set of tiles is closed, in a certain sense.

A wider range of patterns can be created if you add tiles like the ones below to your set.

 

Unfortunately, when you include these tiles, your set is no longer closed. An open question (at least as far as I know) is – how many more tiles would you need to add in order to create a closed set of tiles that includes these? Also, what would these tiles look like? Do they lead to “reasonable” looking knots?

The knot pattern below (better described as a woven set of three links) was made using tiles including the ones from the “extended” set above.

 

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to dan.mackinnon*

 


Everything You Need To Know About Statistics (But Were Afraid To Ask)

Does the thought of p-values and regressions make you break out in a cold sweat? Never fear – read on for answers to some of those burning statistical questions that keep you up 87.9% of the night.

  • What are my hypotheses?

There are two types of hypothesis you need to get your head around: null and alternative. The null hypothesis always states the status quo: there is no difference between two populations, there is no effect of adding fertiliser, there is no relationship between weather and growth rates.

Basically, nothing interesting is happening. Generally, scientists conduct an experiment seeking to disprove the null hypothesis. We build up evidence, through data collection, against the null, and if the evidence is sufficient we can say with a degree of probability that the null hypothesis is not true.

We then accept the alternative hypothesis. This hypothesis states the opposite of the null: there is a difference, there is an effect, there is a relationship.

  • What’s so special about 5%?

One of the most common numbers you stumble across in statistics is alpha = 0.05 (or in some fields 0.01 or 0.10). Alpha denotes the fixed significance level for a given hypothesis test. Before starting any statistical analyses, along with stating hypotheses, you choose a significance level you’re testing at.

This states the threshold at which you are prepared to accept the possibility of a Type I Error – otherwise known as a false positive – rejecting a null hypothesis that is actually true.

  • Type what error?

Most often we are concerned primarily with reducing the chance of a Type I Error over its counterpart (Type II Error – accepting a false null hypothesis). It all depends on what the impact of either error will be.

Take a pharmaceutical company testing a new drug; if the drug actually doesn’t work (a true null hypothesis) then rejecting this null and asserting that the drug does work could have huge repercussions – particularly if patients are given this drug over one that actually does work. The pharmaceutical company would be concerned primarily with reducing the likelihood of a Type I Error.

Sometimes, a Type II Error could be more important. Environmental testing is one such example; if the effect of toxins on water quality is examined, and in truth the null hypothesis is false (that is, the presence of toxins does affect water quality) a Type II Error would mean accepting a false null hypothesis, and concluding there is no effect of toxins.

The down-stream issues could be dire, if toxin levels are allowed to remain high and there is some health effect on people using that water.

Do you know the difference between continuous and categorical variables?

  • What is a p-value, really?

Because p-values are thrown about in science like confetti, it’s important to understand what they do and don’t mean. A p-value expresses the probability of getting a given result from a hypothesis test, or a more extreme result, if the null hypothesis were true.

Given we are trying to reject the null hypothesis, what this tells us is the odds of getting our experimental data if the null hypothesis is correct. If the odds are sufficiently low we feel confident in rejecting the null and accepting the alternative hypothesis.

What is sufficiently low? As mentioned above, the typical fixed significance level is 0.05. So if the probability portrayed by the p-value is less than 5% you reject the null hypothesis. But a fixed significance level can be deceiving: if 5% is significant, why is 6% not?

It pays to remember that such probabilities are continuous, and any given significance level is arbitrary. In other words, don’t throw your data away simply because you get a p-value of 6-10%.

  • How much replication do I have?

This is probably the biggest issue when it comes to experimental design, in which the focus is on ensuring the right type of data, in large enough quantities, is available to answer given questions as clearly and efficiently as possible.

Pseudoreplication refers to the over-inflation of degrees of freedom (a mathematical restriction put in place when we calculate a parameter – e.g. a mean – from a sample). How would this work in practice?

Say you’re researching cholesterol levels by taking blood from 20 male participants.

Each male is tested twice, giving 40 test results. But the level of replication is not 40, it’s actually only 20 – a requisite for replication is that each replicate is independent of all others. In this case, two blood tests from the same person are intricately linked.

If you were to analyse the data with a sample size of 40, you would be committing the sin of pseudoreplication: inflating your degrees of freedom (which incidentally helps to create a significant test result). Thus, if you start an experiment understanding the concept of independent replication, you can avoid this pitfall.

  • How do I know what analysis to do?

There is a key piece of prior knowledge that will help you determine how to analyse your data. What kind of variable are you dealing with? There are two most common types of variable:

1) Continuous variables. These can take any value. Were you to you measure the time until a reaction was complete, the results might be 30 seconds, two minutes and 13 seconds, or three minutes and 50 seconds.

2) Categorical variables. These fit into – you guessed it – categories. For instance, you might have three different field sites, or four brands of fertiliser. All continuous variables can be converted into categorical variables.

With the above example we could categorise the results into less than one minute, one to three minutes, and greater than three minutes. Categorical variables cannot be converted back to continuous variables, so it’s generally best to record data as “continuous” where possible to give yourself more options for analysis.

Deciding which to use between the two main types of analysis is easy once you know what variables you have:

ANOVA (Analysis of Variance) is used to compare a categorical variable with a continuous variable – for instance, fertiliser treatment versus plant growth in centimetres.

Linear Regression is used when comparing two continuous variables – for instance, time versus growth in centimetres.

Though there are many analysis tools available, ANOVA and linear regression will get you a long way in looking at your data. So if you can start by working out what variables you have, it’s an easy second step to choose the relevant analysis.

Ok, so perhaps that’s not everything you need to know about statistics, but it’s a start. Go forth and analyse!

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Sarah-Jane O’Connor*

 


Secant and Tangent

The names of the trigonometric ratios tangent and secant are derived from the Latin “to touch” and “to cut” – the tangent to a figure is a line that touches it in one place, where a secant cuts through it in two or more. But how are these geometric terms related to the ratios that bear their names? The answer can be shown using the diagram at the top of the post – a diagram that used to be a standard one in high school trig text books.

Consider the acute angle BAC. Allow |AC| = 1, and construct a unit circle about A that goes through C. Construct a tangent to this circle at C, and extend the segment AB so that it meets this tangent at E. So, the segment CE lies on the tangent while the segment AE lies on the secant of the unit circle formed around BAC. ACE is a new right triangle that contains the original BAC.

The tangent of BAC is BC/AB (opposite/adjacent), but if we now look at the second triangle ACE, we see tht it is also given by (CE/AC)=(CE/1)=CE – the tangent is measured by the segment of the tangent, CE. Similarly, the secant of BAC is given by AC/AB (hypoteneuse/adjacent), but again turning to the second triangle ACE, we see that this is (AC/AB)=(AE/AC)=(AE/1)=AE – and the secant is provided by the length of the secant, AE.

This treatment was taken from the book “Plane Trigonometry and Tables” by G. Wentworth, published in 1903. In some of the texts of this era, the “primary” trigonometric ratios were sinsec, and tan (rather than sincos, and tan), perhaps owing their primacy to constructions like the one described above.

The cosine was considered a secondary trigonometric ratio – its name coming from the phrase “complement’s sine.” Along with the usual ratios, texts often presented several convienience ratios that are now antiquated, such as the versedsine vrsin(x) = 1-cos(x) and the half-versed sine or haversine hvrsn(x)= (1/2)vrsin(x).

The most fundamental trigonometric ratio has the most obscure name. It is generally claimed that the word “sine” comes from Latin word for “bend,” but some have suggested that the word is ultimately derived from the name of the curve formed by the gathering of a toga, or from the Latin word for “bowstring.” In Arithmetic, Algebra, Analysis, Felix Klein states that “sine” represents a Latin mis-translation of an Arabic word, but does not go on to explain its origins any further.

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to dan.mackinnon*


Mathematicians Have Finally Proved That Bach was a Great Composer

Converting hundreds of compositions by Johann Sebastian Bach into mathematical networks reveals that they store lots of information and convey it very effectively.

Johann Sebastian Bach is considered one of the great composers of Western classical music. Now, researchers are trying to figure out why – by analysing his music with information theory.

Suman Kulkarni at the University of Pennsylvania and her colleagues wanted to understand how the ability to recall or anticipate a piece of music relates to its structure. They chose to analyse Bach’s opus because he produced an enormous number of pieces with many different structures, including religious hymns called chorales and fast-paced, virtuosic toccatas.

First, the researchers translated each composition into an information network by representing each note as a node and each transition between notes as an edge, connecting them. Using this network, they compared the quantity of information in each composition. Toccatas, which were meant to entertain and surprise, contained more information than chorales, which were composed for more meditative settings like churches.

Kulkarni and her colleagues also used information networks to compare Bach’s music with listeners’ perception of it. They started with an existing computer model based on experiments in which participants reacted to a sequence of images on a screen. The researchers then measured how surprising an element of the sequence was. They adapted information networks based on this model to the music, with the links between each node representing how probable a listener thought it would be for two connected notes to play successively – or how surprised they would be if that happened. Because humans do not learn information perfectly, networks showing people’s presumed note changes for a composition rarely line up exactly with the network based directly on that composition. Researchers can then quantify that mismatch.

In this case, the mismatch was low, suggesting Bach’s pieces convey information rather effectively. However, Kulkarni hopes to fine-tune the computer model of human perception to better match real brain scans of people listening to the music.

“There is a missing link in neuroscience between complicated structures like music and how our brains respond to it, beyond just knowing the frequencies [of sounds]. This work could provide some nice inroads into that,” says Randy McIntosh at Simon Fraser University in Canada. However, there are many more factors that affect how someone perceives music – for example, how long a person listens to a piece and whether or not they have musical training. These still need to be accounted for, he says.

Information theory also has yet to reveal whether Bach’s composition style was exceptional compared with other types of music. McIntosh says his past work found some general similarities between musicians as different from Bach as the rock guitarist Eddie Van Halen, but more detailed analyses are needed.

“I would love to perform the same analysis for different composers and non-Western music,” says Kulkarni.

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Karmela Padavic-Callaghan*