These 7 Mathematical Facts Will Blow Your Mind

What better way is there to celebrate pi day than with a slice of mathematics? Here are 7 mathematical facts to enjoy.

There’s a mathematical trick to get out of any maze

It will soon be 14 March and that means pi day. We like to mark this annual celebration of the great mathematical constant at New Scientist by remembering some of our favourite recent stories from the world of mathematics. We have extracted a list of surprising facts from them to whet your appetite, but for the full pi day feast click through for the entire articles. These are normally only available to subscribers but to honour the world’s circumferences and diameters we have decided to make them free for a limited time.

The world’s best kitchen tile

There is a shape called “the hat” that can completely cover a surface without ever creating a repeating pattern. For decades, mathematicians had wondered whether a single tile existed that could do such a thing. Roger Penrose discovered pairs of tiles in the 1970s that could do the job but nobody could find a single tile that when laid out would have the same effect. That changed when the hat was discovered last year.

Why you’re so unique

You are one in a million. Or really, it should be 1 in a 1010^68.  This number, dubbed the doppelgängion by mathematician Antonio Padilla, is so large it is hard to wrap your head around. It is 1 followed by 100 million trillion trillion trillion trillion trillion zeroes and relates to the chances of finding an exact you somewhere else in the universe. Imagining a number of that size is so difficult that the quantum physics required to calculate it seems almost easy in comparison. There are only a finite number of quantum states that can exist in a you-sized portion of space. You reach the doppelgängion by adding them all up. Padilla also wrote about four other mind-blowing numbers for New Scientist. Here they all are.

An amazing trick

There is a simple mathematical trick that will get you out of any maze: always turn right. No matter how complicated the maze, how many twists, turns and dead ends there are, the method always works. Now you know the trick, can you work out why it always leads to success?

And the next number is

There is a sequence of numbers so difficult to calculate that mathematicians have only just found the ninth in the series and it may be impossible to calculate the tenth. These numbers are called Dedekind numbers after mathematician Richard Dedekind and describe the number of possible ways a set of logical operations can be combined. When the set contains just a few elements, calculating the corresponding Dedekind number is relatively straightforward, but as the number of elements increases, the Dedekind number grows at “double exponential speed”. Number nine in the series is 42 digits long and took a month of calculation to find.

Can’t see the forest for the TREE(3)

There is a number so big that in can’t fit in the universe. TREE(3) comes from a simple mathematical game. The game involves generating a forest of trees using different combinations of seeds according to a few simple rules. If you have one type of seed, the largest forest allowed can have one tree. For two types of seed, the largest forest is three trees. But for three types of seed, well, the largest forest has TREE(3) trees, a number that is just too big for the universe.

The language of the universe

There is a system of eight-dimensional numbers called octonions that physicists are trying to use to mathematically describe the universe. The best way to understand octonions is first to consider taking the square root of -1. There is no such number that is the result of that calculation among the real numbers (which includes all the counting numbers, fractions, numbers like pi, etc.), so mathematicians add another called i. When combined with the real numbers, this gives a system called the complex numbers, which consist of a real part and an “imaginary part”, such as 3+7i. In other words, it is two-dimensional. Octonions arise by continuing to build up the system until you get to eight dimensions. It isn’t just mathematical fun and games though – there is reason to believe that octonions may be the number system we need to understand the laws of nature.

So many new solutions

Mathematicians went looking for solutions to the three-body problem and found 12,000 of them. The three-body problem is a classic astronomy problem of how three objects can form a stable orbit around each other. Such an arrangement is described by Isaac Newton’s laws of motion but actually finding permissible solutions is incredibly difficult. In 2007, mathematicians managed to find 1223 new solutions to the problem but this was greatly surpassed last year when a team found more than 12,000 more.

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Timothy Revell*


How The Maths Behind Honeycombs Can Help You Work A Jigsaw Puzzle

Maths tells us the best way to cover a surface with copies of a shape – even when it comes to jigsaw puzzles, says Katie Steckles.

WHAT do a bathroom wall, a honeycomb and a jigsaw puzzle have in common? Obviously, the answer is mathematics.

If you are trying to cover a surface with copies of a shape – say, for example, you are tiling a bathroom – you ideally want a shape like a square or rectangle. They will cover the whole surface with no gaps, which is why these boring shapes get used as wall tiles so often.

But if your shapes don’t fit together exactly, you can still try to get the best coverage possible by arranging them in an efficient way.

Imagine trying to cover a surface with circular coins. The roundness of the circles means there will be gaps between them. For example, we could use a square grid, placing the coins on the intersections. This will cover about 78.5 per cent of the area.

But this isn’t the most efficient way: in 1773, mathematician Joseph-Louis Lagrange showed that the optimal arrangement of circles involves a hexagonal grid, like the cells in a regular honeycomb – neat rows where each circle sits nestled between the two below it.

In this situation, the circles will cover around 90.7 per cent of the space, which is the best you can achieve with this shape. If you ever need to cover a surface with same-size circles, or pack identical round things into a tray, the hexagon arrangement is the way to go.

But this isn’t just useful knowledge if you are a bee: a recent research paper used this hexagonal arrangement to figure out the optimal size table for working a jigsaw puzzle. The researchers calculated how much space would be needed to lay out the pieces of an unsolved jigsaw puzzle, relative to the solved version. Puzzle pieces aren’t circular, but they can be in any orientation and the tabs sticking out stop them from moving closer together, so each takes up a theoretically circular space on the table.

By comparing the size of the central rectangular section of the jigsaw piece to the area it would take up in the hexagonal arrangement, the paper concluded that an unsolved puzzle takes up around 1.73 times as much space.

This is the square root of three (√3), a number with close connections to the regular hexagon – one with a side length of 1 will have a height of √3. Consequently, there is also a √3 in the formula for the hexagon’s area, which is 3/2 × √3 × s2, where s is the length of a side. This is partly why it pops out, after some fortuitous cancellation, as the answer here.

So if you know the dimensions of a completed jigsaw puzzle, you can figure out what size table you need to lay out all the pieces: multiply the width and height, then multiply that by 1.73. For this ingenious insight, we can thank the bees.

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Katie Steckles*


Understanding how the brain works can transform how school students learn maths

School mathematics teaching is stuck in the past. An adult revisiting the school that they attended as a child would see only superficial changes from what they experienced themselves.

Yes, in some schools they might see a room full of electronic tablets, or the teacher using a touch-sensitive, interactive whiteboard. But if we zoom in on the details – the tasks that students are actually being given to help them make sense of the subject – things have hardly changed at all.

We’ve learnt a huge amount in recent years about cognitive science – how our brains work and how people learn most effectively. This understanding has the potential to revolutionise what teachers do in classrooms. But the design of mathematics teaching materials, such as textbooks, has benefited very little from this knowledge.

Some of this knowledge is counter-intuitive, and therefore unlikely to be applied unless done so deliberately. What learners prefer to experience, and what teachers think is likely to be most effective, often isn’t what will help the most.

For example, cognitive science tells us that practising similar kinds of tasks all together generally leads to less effective learning than mixing up tasks that require different approaches.

In mathematics, practising similar tasks together could be a page of questions each of which requires addition of fractions. Mixing things up might involve bringing together fractions, probability and equations in immediate succession.

Learners make more mistakes when doing mixed exercises, and are likely to feel frustrated by this. Grouping similar tasks together is therefore likely to be much easier for the teacher to manage. But the mixed exercises give the learner important practice at deciding what method they need to use for each question. This means that more knowledge is retained afterwards, making this what is known as a “desirable difficulty”.

Cognitive science applied

We are just now beginning to apply findings like this from cognitive science to design better teaching materials and to support teachers in using them. Focusing on school mathematics makes sense because mathematics is a compulsory subject which many people find difficult to learn.

Typically, school teaching materials are chosen by gut reactions. A head of department looks at a new textbook scheme and, based on their experience, chooses whatever seems best to them. What else can they be expected to do? But even the best materials on offer are generally not designed with cognitive science principles such as “desirable difficulties” in mind.

My colleagues and I have been researching educational designthat applies principles from cognitive science to mathematics teaching, and are developing materials for schools. These materials are not designed to look easy, but to include “desirable difficulties”.

They are not divided up into individual lessons, because this pushes the teacher towards moving on when the clock says so, regardless of student needs. Being responsive to students’ developing understanding and difficulties requires materials designed according to the size of the ideas, rather than what will fit conveniently onto a double-page spread of a textbook or into a 40-minute class period.

Switching things up

Taking an approach led by cognitive science also means changing how mathematical concepts are explained. For instance, diagrams have always been a prominent feature of mathematics teaching, but often they are used haphazardly, based on the teacher’s personal preference. In textbooks they are highly restricted, due to space constraints.

Often, similar-looking diagrams are used in different topics and for very different purposes, leading to confusion. For example, three circles connected as shown below can indicate partitioning into a sum (the “part-whole model”) or a product of prime factors.

These involve two very different operations, but are frequently represented by the same diagram. Using the same kind of diagram to represent conflicting operations (addition and multiplication) leads to learners muddling them up and becoming confused.

Number diagrams showing numbers that add together to make six and numbers that multiply to make six. Colin Foster

The “coherence principle” from cognitive science means avoiding diagrams where their drawbacks outweigh their benefits, and using diagrams and animations in a purposeful, consistent way across topics.

For example, number lines can be introduced at a young age and incorporated across many topic areas to bring coherence to students’ developing understanding of number. Number lines can be used to solve equations and also to represent probabilities, for instance.

Unlike with the circle diagrams above, the uses of number lines shown below don’t conflict but reinforce each other. In each case, positions on the number line represent numbers, from zero on the left, increasing to the right.

A number line used to solve an equation. Colin Foster

A number line used to show probability. Colin Foster

There are disturbing inequalities in the learning of mathematics, with students from poorer backgrounds underachieving relative to their wealthier peers. There is also a huge gender participation gap in maths, at A-level and beyond, which is taken by far more boys than girls.

Socio-economically advantaged families have always been able to buy their children out of difficulties by using private tutors, but less privileged families cannot. Better-quality teaching materials, based on insights from cognitive science, mitigate the impact for students who have traditionally been disadvantaged by gender, race or financial background in the learning of mathematics.

For more such insights, log into our website https://international-maths-challenge.com

Credit of the article given to SrideeStudio/Shutterstock


Pythagoras Was Wrong About The Maths Behind Pleasant Music

It is said that the ancient Greek philosopher Pythagoras came up with the idea that musical note combinations sound best in certain mathematical ratios, but that doesn’t seem to be true.

Pythagoras has influenced Western music for millennia

An ancient Greek belief about the most pleasing combinations of musical notes – often attributed to the philosopher Pythagoras – doesn’t actually reflect the way people around the world appreciate harmony, researchers have found. Instead, Pythagoras’s mathematical arguments may merely have been taken as fact and used to assert the superiority of Western culture.

According to legend, Pythagoras found that the ringing sounds of a blacksmith’s hammers sounded most pleasant, or “consonant”, when the ratio between the size of two tools involved two integers, or whole numbers, such as 3:2.

This idea has shaped how Western musicians play chords, because the philosopher’s belief that listeners prefer music played in perfect mathematical ratios was so influential. “Consonance is a really important concept in Western music, in particular for telling us how we build harmonies,” says Peter Harrison at the University of Cambridge.

But when Harrison and his colleagues surveyed 4272 people in the UK and South Korea about their perceptions of music, their findings flew in the face of this ancient idea.

In one experiment, participants were played musical chords and asked to rate how pleasant they seemed. Listeners were found to slightly prefer sounds with an imperfect ratio. Another experiment discovered little difference in appeal between the sounds made by instruments from around the world, including the bonang, an Indonesian gong chime, which produces harmonies that cannot be replicated on a Western piano.

While instruments like the bonang have traditionally been called “inharmonic” by Western music culture, study participants appreciated the sounds the instrument and others like it made. “If you use non-Western instruments, you start preferring different harmonies,” says Harrison.

“It’s fascinating that music can be so universal yet so diverse at the same time,” says Patrick Savage at the University of Auckland, New Zealand. He says that the current study also contradicts previous research he did with some of the same authors, which found that integer ratio-based rhythms are surprisingly universal.

Michelle Phillips at the Royal Northern College of Music in Manchester, UK, points out that the dominance of Pythagorean tunings, as they are known, has been in question for some time. “Research has been hinting at this for 30 to 40 years, as music psychology has grown as a discipline,” she says. “Over the last fifteenish years, people have undertaken more work on music in the whole world, and we now know much more about non-Western pitch perception, which shows us even more clearly how complex perception of harmony is.”

Harrison says the findings tell us both that Pythagoras was wrong about music – and that music and music theory have been too focused on the belief that Western views are held worldwide. “The idea that simple integer ratios are superior could be framed as an example of mathematical justification for why we’ve got it right over here,” he says. “What our studies are showing is that, actually, this is not an inviolable law. It’s something that depends very much on the way in which you’re playing music.”

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Chris Stokel-Walker*


Mathematicians Discover ‘Soft Cell’ Shapes Behind The Natural World

The mathematical study of how repeating tiles fit together usually involves pointed shapes like triangles or squares, but these aren’t normally found in the natural world.

The chambers of a nautilus shell are an example of a soft cell in nature

A new class of mathematical shapes called soft cells can be used to describe how a remarkable variety of patterns in living organisms – such as muscle cells and nautilus shells – form and grow.

Mathematicians have long studied how tiles fit together and cover surfaces, but they have largely focused on simple shapes that fit together without gaps, such as squares and triangles, because these are easier to work with.

It is rare, however, for nature to use perfectly straight lines and sharp points. Some natural objects are similar enough to straight-edged tiles, known as polyhedrons, that they can be described by polyhedral models, such as a collection of bubbles in a foam or the cracked surface of Mars. But there are some curved shapes, such as three-dimensional polygons found in the epithelial cells that tile the lining of blood vessels and organs, that are harder to describe.

Now, Gábor Domokos at the Budapest University of Technology, Hungary, and his colleagues have discovered a class of shapes that describe tilings with curved edges, which they call soft cells. The key to these shapes is that they contain as few sharp corners as possible, while also fitting together as snugly as they can.

“These shapes emerge in art, but also in biology,” says Domokos. “If you look at sections of muscle tissue, you’ll see the cells having just two sharp corners, which is one less than the triangle – it is a very special kind of tiling.”

In two dimensions, soft cells have just two sharp points connected by curved edges and can take on an infinite number of different forms. But in three dimensions, these shapes have no sharp points, or corners, at all. It isn’t obvious how many of these 3D soft cells, which Domokos and his team call z-cells, there might be or how to easily make them, he says.

After defining soft cells mathematically, Domokos and his team looked for examples in nature and discovered they were widespread. “We found that architects have found these kinds of shapes intuitively when they wanted to avoid corners,” says Domokos. They also found z-cells were common in biological processes that grow from the tip of an object.

One of the clearest examples of z-cells was in seashells made from multiple chambers, such as the nautilus shell, which is an object of fascination for mathematicians because its structure follows a logarithmic pattern.

Domokos and his team noticed that the two-dimensional slices of each of the shell’s chambers looked like a soft cell, so they examined nautilus shells with a CT scanner to measure the chambers in three dimensions. “We saw no corners,” says Domokos, which suggested that the chambers were like the z-cells they had described mathematically.

“They’ve come up with a language for describing cellular materials that might be more physically realistic than the strict polyhedral model that mathematicians have been playing with for millennia,” says Chaim Goodman-Strauss at the University of Arkansas. These models could improve our understanding of how the geometry of biological systems, like in soft tissues, affects their material properties, says Goodman-Strauss. “The way that geometry influences the mechanical properties of tissue is really very poorly understood.”

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Alex Wilkins*


Why Science Relies Too Much On Mathematics

Mathematics is at the heart of modern science but we shouldn’t forget other ways to reason, says author and researcher Roland Ennos.

“Science is written in the language of mathematics,” proclaimed Galileo in 1623. And over the past few centuries science has become ever more mathematical. Nowadays, mathematics seems to hold total hegemony, particularly in the fields of quantum physics and relativity – the teaching of modern physics seems to involve deriving an endless series of equations.

But though it is an important tool, mathematical analysis is not the only way of approaching scientific enquiry. Scientists also need to develop concepts on which to build the mathematics and carry out experiments to test and demonstrate their ideas. And they also need to translate the equations back into physical concepts and verbal explanations to make them comprehensible. These other aspects have long been undervalued – in both the teaching and practice of physics – and this has damaged and is continuing to damage our understanding of the world around us.

Nowhere is this better exemplified than in the science of rotation and spin, which might at first glance appear to be a shining example of the triumph of mathematics. In his 1687 magnum opus Principia, Isaac Newton laid out the mathematical workings of our solar system: he showed how the laws of motion and gravity explain how the planets orbit around the sun, and how the spin of the earth causes it to bulge, drives the tides and makes its tilted axis slowly wobble. Over the next hundred years, Newton’s analysis was extended and translated into modern mathematical language. All the problems of cosmology appeared to have been solved, the first of many occasions when scientists have mistakenly thought they had uncovered all the secrets of the universe.

Yet Newton’s triumph was only made possible by his more down-to-earth contemporary Robert Hooke. It was Hooke who made the conceptual leap that an object moving in a circle is travelling at a constant speed but is also accelerating at right angles towards the centre of the circle. He also went on to show experimentally how a universal gravity could provide the force that causes the planets to orbit around the sun and the moon around Earth. He hung a large ball, representing Earth, from the ceiling and a small ball, representing the moon, from the large ball, before pulling them away from vertical and setting them moving. The tension in the ropes, representing gravity, provided the inward force that kept them travelling around in a circle.

Unfortunately, Newton, who came to dominate world science, had little time for such conceptual and experimental approaches, insisting that equations were the only way to describe physical reality. His influence impeded further conceptual advances in mechanics and consequently progress in cosmology. For instance, it delayed our understanding of how the solar system was created.

The accepted model – the nebular hypothesis – was put forward in the 18th century by such luminaries as the philosopher Immanuel Kant and the mathematician Pierre-Simon Laplace. The hypothesis proposed that the solar system formed from a spinning ball of dust and gas. Gravity flattened the ball into a disc before the attraction between the particles pulled them together into planets and moons, all orbiting in the same plane and in the same direction.

All seemed well until the 1850s when engineers such as William Rankine finally developed a new mechanical concept – the conservation of angular momentum – 150 years after the conservation of linear momentum had been accepted. This new concept revealed a potential flaw in the nebular hypothesis that had remained hidden in Newton’s equations. To have shrunk to its size and to spin so slowly, the sun must have lost almost all its angular momentum, something that seemed to break this new law of nature.

It was only 40 years ago that a convincing explanation was proposed about how the sun lost its angular momentum. The charged particles shot out by the sun in the solar wind are channelled within magnetic fields before being flung out slowing the spin of the material that remained and allowing gravity to draw it inwards. It was only two years ago that this explanation was finally verified by the Parker Solar Probe, which found that the solar particles were channelled up to 32 million kilometres outwards before being released. And only in October 2023 did the James Webb Space Telescope reveal the same process occurring in the newly forming solar system of the star HH212.

The overreliance on mathematics also delayed our understanding of how the spin of Earth makes it habitable. By the end of the 18th century, Laplace had derived equations describing how Earth’s spin deflects bodies of water moving over its surface. However, even he failed to observe that it would also affect solid objects and gases, so his work was ignored by the early meteorologists.

This only changed in 1851, when the French physicist Jean Foucault produced a free-hanging pendulum that demonstrated Laplace’s forces in action. The forces diverted the bob to the right during each sweep so that its plane of swing gradually rotated, like a Spirograph drawing. Not only did this prove the spin of Earth to a sceptical public, but it showed schoolteacher William Ferrel that Laplace’s forces would also deflect air masses moving around Earth’s surface. This would explain how global air currents are deflected east and west to form the three convection cells that cover each hemisphere and create the world’s climate zones, and how they divert winds into rotating weather systems, creating depressions, hurricanes and anticyclones. Modern meteorology was born.

In 1835, the French engineer Gaspard-Gustave de Coriolis produced more general equations describing the forces on bodies moving within a rotating reference frame. However, since these were in a paper examining the efficiency of water wheels, his work was largely ignored by scientists. Instead, it was a simple experiment that enabled geophysicists to understand how Earth’s spin diverts fluid movements in its interior and produces its magnetic field.

In 1911, the British physicist G. I. Taylor investigated how beakers of water behave when they are set spinning. The water quickly spins with the beaker and its surface rises in a parabola until the extra pressure counters the centrifugal force on the water. What’s interesting is how the water behaves when it is disturbed. Its movement changes the centrifugal force on it, as Coriolis’s equations predicted, so that when heated from below, it moves not in huge convection currents but up and down in narrow rotating columns. This discovery led the geophysicists Walter Elsasser and Edward Bullard to realise that the same forces would deflect convection currents in Earth’s metal outer core that are driven by radioactive decay. They are diverted into north-to-south columns of rotating metal that act like self-excited dynamos, producing the magnetic field that shields Earth from charged particles. A simple laboratory demonstration had illuminated events in Earth’s core that had been hidden in Coriolis’s equations.

Today, perhaps the most damaging failure to translate the mathematics of spin into easy-to-grasp concepts is in the fields of biomechanics and sports science. Our bodies are complex systems of rotating joints, but despite the sophistication of modern motion analysis software, few researchers realise that accelerating our joints can produce torques that actively accelerate our limbs. Biomechanics researchers are only starting to realise that accelerating our bodies upwards at the start of each step swings our arms and legs when we walk, and that a sling action straightens them at the end of each step.

In the same way, when we throw things, we use a multi-stage sling action; rotating our shoulders accelerates first our upper arm, then our forearm and finally our hands. And the reason we can wield heavy sledgehammers and swing wooden clubs to smash golf balls down the fairway is that their handles act as further sling elements; they accelerate forwards due to the centrifugal forces on them without us having to flex our wrists. Failing to articulate these simple mechanical concepts has made biomechanics ill-equipped to communicate with and help physiotherapists, sports coaches and roboticists.

And there is still confusion about the simplest aspects of rotation among physicists. Even Richard Feynman, for instance, was unable to explain the so-called Dzhanibekov effect – why spinning wing nuts on the International Space Station flip every few seconds. This was despite the fact that the mathematician Leonhard Euler had shown this should happen almost 300 years ago. The same is also true of more down-to-earth events: how children power playground swings and how cats land on their feet, for example.

The truth is that the basics of physics, despite involving simple mathematics, are harder to grasp than we tend to think. It took me two years, for instance, to master just the science of spin and rotation for my latest book. We need to spend more time thinking about, visualising and demonstrating basic physical concepts. If we do, we could produce a generation of physicists who can communicate better with everyone else and discover more about the world around us. The answers are probably already there, hidden in the equations.

The Science of Spin by Roland Ennos is out now.

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Roland Ennos*


What are ‘multiplication facts’? Why are they essential to your child’s success in maths?

One of the essential skills students need to master in primary school mathematics are “multiplication facts”.

What are they? What are they so important? And how can you help your child master them?

What are multiplication facts?

Multiplication facts typically describe the answers to multiplication sums up to 10×10. Sums up to 10×10 are called “facts” as it is expected they can be easily and quickly recalled. You may recall learning multiplication facts in school from a list of times tables.

The shift from “times tables” to “multiplication facts” is not just about language. It stems from teachers wanting children to see how multiplication facts can be used to solve a variety of problems beyond the finite times table format.

For example, if you learned your times tables in school (which typically went up to 12×12 and no further), you might be stumped by being asked to solve 15×8 off the top of your head. In contrast, we hope today’s students can use their multiplication facts knowledge to quickly see how 15×8 is equivalent to 10×8 plus 5×8.

The shift in terminology also means we are encouraging students to think about the connections between facts. For example, when presented only in separate tables, it is tricky to see how 4×3 and 3×4 are directly connected.

Maths education has changed

In a previous piece, we talked about how mathematics education has changed over the past 30 years.

In today’s mathematics classrooms, teachers still focus on developing students’ mathematical accuracy and fast recall of essential facts, including multiplication facts.

But we also focus on developing essential problem-solving skills. This helps students form connections between concepts, and learn how to reason through a variety of real-world mathematical tasks.

Why are multiplication facts so important?

By the end of primary school, it is expected students will know multiplication facts up to 10×10 and can recall the related division fact (for example, 10×9=90, therefore 90÷10=9).

Learning multiplication facts is also essential for developing “multiplicative thinking”. This is an understanding of the relationships between quantities, and is something we need to know how to do on a daily basis.

When we are deciding whether it is better to purchase a 100g product for $3 or a 200g product for $4.50, we use multiplicative thinking to consider that 100g for $3 is equivalent to 200g for $6 – not the best deal!

Multiplicative thinking is needed in nearly all maths topics in high school and beyond. It is used in many topics across algebra, geometry, statistics and probability.

This kind of thinking is profoundly important. Research showsstudents who are more proficient in multiplicative thinking perform significantly better in mathematics overall.

In 2001, an extensive RMIT study found there can be as much as a seven-year difference in student ability within one mathematics class due to differences in students’ ability to access multiplicative thinking.

These findings have been confirmed in more recent studies, including a 2021 paper.

So, supporting your child to develop their confidence and proficiency with multiplication is key to their success in high school mathematics. How can you help?

Below are three research-based tips to help support children from Year 2 and beyond to learn their multiplication facts.

1. Discuss strategies

One way to help your child’s confidence is to discuss strategies for when they encounter new multiplication facts.

Prompt them to think of facts they already and how they can be used for the new fact.

For example, once your child has mastered the x2 multiplication facts, you can discuss how 3×6 (3 sixes) can be calculated by doubling 6 (2×6) and adding one more 6. We’ve now realised that x3 facts are just x2 facts “and one more”!

The Conversation, CC BY-SA

Strategies can be individual: students should be using the strategy that makes the most sense to them. So you could ask a questions such as “if you’ve forgotten 6×7, how could you work it out?” (we might personally think of 6×6=36 and add one more 6, but your child might do something different and equally valid).

This is a great activity for any quiet car trip. It can also be a great drawing activity where you both have a go at drawing your strategy and then compare. Identifying multiple strategies develops flexible thinking.

2. Help them practise

Practising recalling facts under a friendly time crunch can be helpful in achieving what teachers call “fluency” (that is, answering quickly and easily).

A great game you could play with your children is “multiplication heads up” . Using a deck of cards, your child places a card to their forehead where you can see but they cannot. You then flip over the top card on the deck and reveal it to your child. Using the revealed card and the card on your child’s head you tell them the result of the multiplication (for example, if you flip a 2 and they have a 3 card, then you tell them “6!”).

Based on knowing the result, your child then guesses what their card was.

If it is challenging to organise time to pull out cards, you can make an easier game by simply quizzing your child. Try to mix it up and ask questions that include a range of things they know well with and ones they are learning.

Repetition and rehearsal will mean things become stored in long-term memory.

3. Find patterns

Another great activity to do at home is print some multiplication grids and explore patterns with your child.

The Conversation, CC BY-SA

A first start might be to give your child a blank or partially blankmultiplication grid which they can practise completing.

Then, using coloured pencils, they can colour in patterns they notice. For example, the x6 column is always double the answer in the x3 column. Another pattern they might see is all the even answers are products of 2, 4, 6, 8, 10. They can also notice half of the grid is repeated along the diagonal.

This also helps your child become a mathematical thinker, not just a calculator.

The importance of multiplication for developing your child’s success and confidence in mathematics cannot be understated. We believe these ideas will give you the tools you need to help your child develop these essential skills.

For more such insights, log into our website https://international-maths-challenge.com

 


What are ‘multiplication facts’? Why are they essential to your child’s success in math?

One of the essential skills students need to master in primary school mathematics are “multiplication facts.”

What are they? What are they so important? And how can you help your child master them?

What are multiplication facts?

Multiplication facts typically describe the answers to multiplication sums up to 10×10. Sums up to 10×10 are called “facts” as it is expected they can be easily and quickly recalled. You may recall learning multiplication facts in school from a list of times tables.

The shift from “times tables” to “multiplication facts” is not just about language. It stems from teachers wanting children to see how multiplication facts can be used to solve a variety of problems beyond the finite times table format.

For example, if you learned your times tables in school (which typically went up to 12×12 and no further), you might be stumped by being asked to solve 15×8 off the top of your head. In contrast, we hope today’s students can use their multiplication facts knowledge to quickly see how 15×8 is equivalent to 10×8 plus 5×8.

The shift in terminology also means we are encouraging students to think about the connections between facts. For example, when presented only in separate tables, it is tricky to see how 4×3 and 3×4 are directly connected.

Math education has changed

In a previous piece, we talked about how mathematics education has changed over the past 30 years.

In today’s mathematics classrooms, teachers still focus on developing students’ mathematical accuracy and fast recall of essential facts, including multiplication facts.

But we also focus on developing essential problem-solving skills. This helps students form connections between concepts, and learn how to reason through a variety of real-world mathematical tasks.

Why are multiplication facts so important?

By the end of primary school, it is expected students will know multiplication facts up to 10×10 and can recall the related division fact (for example, 10×9=90, therefore 90÷10=9).

Learning multiplication facts is also essential for developing “multiplicative thinking.” This is an understanding of the relationships between quantities, and is something we need to know how to do on a daily basis.

When we are deciding whether it is better to purchase a 100g product for $3 or a 200g product for $4.50, we use multiplicative thinking to consider that 100g for $3 is equivalent to 200g for $6—not the best deal!

Multiplicative thinking is needed in nearly all math topics in high school and beyond. It is used in many topics across algebra, geometry, statistics and probability.

This kind of thinking is profoundly important. Research shows students who are more proficient in multiplicative thinking perform significantly better in mathematics overall.

In 2001, an extensive RMIT study found there can be as much as a seven-year difference in student ability within one mathematics class due to differences in students’ ability to access multiplicative thinking.

These findings have been confirmed in more recent studies, including a 2021 paper.

So, supporting your child to develop their confidence and proficiency with multiplication is key to their success in high school mathematics. How can you help?

Below are three research-based tips to help support children from Year 2 and beyond to learn their multiplication facts.

  1. Discuss strategies

One way to help your child’s confidence is to discuss strategies for when they encounter new multiplication facts.

Prompt them to think of facts they already and how they can be used for the new fact.

For example, once your child has mastered the x2 multiplication facts, you can discuss how 3×6 (3 sixes) can be calculated by doubling 6 (2×6) and adding one more 6. We’ve now realized that x3 facts are just x2 facts “and one more”!

Strategies can be individual: students should be using the strategy that makes the most sense to them. So you could ask a questions such as “if you’ve forgotten 6×7, how could you work it out?” (we might personally think of 6×6=36 and add one more 6, but your child might do something different and equally valid).

This is a great activity for any quiet car trip. It can also be a great drawing activity where you both have a go at drawing your strategy and then compare. Identifying multiple strategies develops flexible thinking.

  1. Help them practice

Practicing recalling facts under a friendly time crunch can be helpful in achieving what teachers call “fluency” (that is, answering quickly and easily).

A great game you could play with your children is “multiplication heads up” . Using a deck of cards, your child places a card to their forehead where you can see but they cannot. You then flip over the top card on the deck and reveal it to your child. Using the revealed card and the card on your child’s head you tell them the result of the multiplication (for example, if you flip a 2 and they have a 3 card, then you tell them “6!”).

Based on knowing the result, your child then guesses what their card was.

If it is challenging to organize time to pull out cards, you can make an easier game by simply quizzing your child. Try to mix it up and ask questions that include a range of things they know well with and ones they are learning.

Repetition and rehearsal will mean things become stored in long-term memory.

  1. Find patterns

Another great activity to do at home is print some multiplication grids and explore patterns with your child.

A first start might be to give your child a blank or partially blank multiplication grid which they can practice completing.

Then, using colored pencils, they can color in patterns they notice. For example, the x6 column is always double the answer in the x3 column. Another pattern they might see is all the even answers are products of 2, 4, 6, 8, 10. They can also notice half of the grid is repeated along the diagonal.

This also helps your child become a mathematical thinker, not just a calculator.

The importance of multiplication for developing your child’s success and confidence in mathematics cannot be understated. We believe these ideas will give you the tools you need to help your child develop these essential skills.

For more such insights, log into our website https://international-maths-challenge.com

Credit of the article given to Bronwyn Reid O’Connor and Benjamin Zunica, The Conversation

 


Mathematicians Have Finally Proved That Bach was a Great Composer

Converting hundreds of compositions by Johann Sebastian Bach into mathematical networks reveals that they store lots of information and convey it very effectively.

Johann Sebastian Bach is considered one of the great composers of Western classical music. Now, researchers are trying to figure out why – by analysing his music with information theory.

Suman Kulkarni at the University of Pennsylvania and her colleagues wanted to understand how the ability to recall or anticipate a piece of music relates to its structure. They chose to analyse Bach’s opus because he produced an enormous number of pieces with many different structures, including religious hymns called chorales and fast-paced, virtuosic toccatas.

First, the researchers translated each composition into an information network by representing each note as a node and each transition between notes as an edge, connecting them. Using this network, they compared the quantity of information in each composition. Toccatas, which were meant to entertain and surprise, contained more information than chorales, which were composed for more meditative settings like churches.

Kulkarni and her colleagues also used information networks to compare Bach’s music with listeners’ perception of it. They started with an existing computer model based on experiments in which participants reacted to a sequence of images on a screen. The researchers then measured how surprising an element of the sequence was. They adapted information networks based on this model to the music, with the links between each node representing how probable a listener thought it would be for two connected notes to play successively – or how surprised they would be if that happened. Because humans do not learn information perfectly, networks showing people’s presumed note changes for a composition rarely line up exactly with the network based directly on that composition. Researchers can then quantify that mismatch.

In this case, the mismatch was low, suggesting Bach’s pieces convey information rather effectively. However, Kulkarni hopes to fine-tune the computer model of human perception to better match real brain scans of people listening to the music.

“There is a missing link in neuroscience between complicated structures like music and how our brains respond to it, beyond just knowing the frequencies [of sounds]. This work could provide some nice inroads into that,” says Randy McIntosh at Simon Fraser University in Canada. However, there are many more factors that affect how someone perceives music – for example, how long a person listens to a piece and whether or not they have musical training. These still need to be accounted for, he says.

Information theory also has yet to reveal whether Bach’s composition style was exceptional compared with other types of music. McIntosh says his past work found some general similarities between musicians as different from Bach as the rock guitarist Eddie Van Halen, but more detailed analyses are needed.

“I would love to perform the same analysis for different composers and non-Western music,” says Kulkarni.

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Karmela Padavic-Callaghan*


Mathematicians Discovered The Ultimate Bathroom Tile In 2023

After decades of searching, mathematicians discovered a single shape that can cover a surface without forming repeating patterns, launching a small industry of “aperiodic monotile” merchandise.

The “hat” shape can tile an infinite plane without creating repeating patterns

It is rare for a shape to make a splash, but this year one did just that with the announcement of the first ever single tile that can cover a surface without forming repeating patterns. The discovery of this “aperiodic monotile” in March has since inspired everything from jigsaw puzzles to serious research papers.

“It’s more than I can keep up with in terms of the amount and even, to some extent, the level and depth of the material, because I’m not really a practising mathematician, I’m more of a computer scientist,” says Craig Kaplan at the University of Waterloo, Canada. He is on the team that found the shape, which it called the “hat”. Mathematicians had sought such an object for decades.

After revealing the tile in March, the team unveiled a second shape in May, the “spectre”, which improved on the hat by not requiring its mirror image to tile fully, making it more useful for real surfaces.

The hat has since appeared on T-shirts, badges, bags and as cutters that allow you to make your own ceramic versions.

It has also sparked more than a dozen papers in fields from engineering to chemistry. Researchers have investigated how the structure maps into six-dimensional spaces and the likely physical properties of a material with hat-shaped crystals. Others have found that structures built with repeating hat shapes could be more resistant to fracturing than a honeycomb pattern, which is renowned for its strength.

Kaplan says a scientific instrument company has also expressed an interest in using a mesh with hat-shaped gaps to collect atmospheric samples on Mars, as it believes that the pattern may be less susceptible to problems than squares.

“It’s a bit bittersweet,” says Kaplan. “We’ve set these ideas free into the world and they’ve taken off, which is wonderful, but leaves me a little bit melancholy because it’s not mine any more.”

However, the team has no desire to commercialise the hat, he says. “The four of us agreed early on that we’d much rather let this be free and see what wonderful things people do with it, rather than trying to protect it in any way. Patents are something that, as mathematicians, we find distasteful.”

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Matthew Sparkes*