People Underestimate The Probability of Including at Least One Minority Member in a Group, Research Suggests

Human society includes various minority groups. However, it is often difficult to know whether someone is a minority member simply by looking at the person, as minority traits may not be visually apparent (e.g., sexual orientation, color vision deficiency). In addition, minorities may hide their minority traits or identities. Consequently, we may have been unaware of the presence of minorities in daily life. Probabilistic thinking is critical in such uncertain situations.

The people with whom we interact in our daily lives are typically a group of several dozen individuals (e.g., a school class). How do we judge the probability of including at least one minoritymember in such groups? For example, how does a school teacher estimate the probability of having a minority in the class?

Cognitive psychology states that humans often make unrealistic judgments about probabilities, such as risk. So, do we also misperceive the probability of minority inclusion in a group or can we accurately assess the probability through heuristics or knowledge?

Associate Professor Niimi of Niigata University demonstrates that people unrealistically underestimate such probabilities. The study is published in the Journal of Cognitive Psychology.

First, the researchers examine how the probabilities are computed mathematically. If the prevalence of the minority in question is 0.03 (3%) and the group size is 30, the probability of including one or more minority members in the group is one minus the probability that all 30 members are NOT the minority.

Because the probability that one person is not a minority is 0.97, the probability of minority inclusion is given by 1– (0.97)30 (if there is no other information). The computer tells us that the result is 0.60 (60%). When the minority prevalence is 7%, it increases to 89%. These mathematical probabilities appear to be higher than those of naive intuition.

Indeed, most respondents estimated probabilities far below the mathematical probabilities. The second image shows examples of the questions and results. Approximately 90% of the respondents estimated below-mathematical probabilities, and the majority of the estimates were lower than 10%. This underestimation was repeatedly observed under a variety of conditions (online worker and student samples, revised wording, etc.).

Why are the probabilities of minority inclusion underestimated? Is this a result of prejudice or stereotyping against minorities? The answer was “No.” The same underestimation occurred even when minorities unlikely to be associated with negative stereotypes were used (e.g., people with absolute pitch and fictional minorities). Of course, the mathematical calculations cannot be performed mentally. No wonder the respondents’ estimates were inaccurate.

The problem was why the estimates were not random, but strongly biased toward underestimation. Even if one does not know how to calculate it, one may have learned from daily experience that the probability of inclusion is much higher than the prevalence (e.g., the probability of including a woman in a group of randomly selected 100 individuals should be greater than 50%). However, the present results suggest that most people are unfamiliar with the concept of probability of inclusion and do not know how to think about it.

Further analysis revealed that the major source of underestimation was the use of heuristics, such as ignoring group size and reporting prevalence, or calculating the expected value of the number of minorities. Although most heuristics were erroneous, some yielded relatively reasonable estimates (e.g., assuming a high probability if the expected value exceeded one).

Underestimating the probability of minority inclusion may lead to the misconception that minorities are irrelevant in our daily lives. However, there was one promising finding in the present study.

When the respondents were given the mathematical probability of minority inclusion, their attitudes changed in favour of inclusive views about minorities compared to conditions in which mathematical probability was not given. Knowledge may compensate for cognitive bias.

For more such insights, log into our website https://international-maths-challenge.com

Credit of the article given to Niigata University


The case for ‘math-ish’ thinking

For everyone whose relationship with mathematics is distant or broken, Jo Boaler, a professor at Stanford Graduate School of Education (GSE), has ideas for repairing it. She particularly wants young people to feel comfortable with numbers from the start—to approach the subject with playfulness and curiosity, not anxiety or dread.

“Most people have only ever experienced what WEcall narrow mathematics—a set of procedures they need to follow, at speed,” Boaler says. “Mathematics should be flexible, conceptual, a place where we play with ideas and make connections. If we open it up and invite more creativity, more diverse thinking, we can completely transform the experience.”

Boaler, the Nomellini and Olivier Professor of Education at the GSE, is the co-founder and faculty director of Youcubed, a Stanford research center that provides resources for math learning that has reached more than 230 million students in over 140 countries. In 2013 Boaler, a former high school math teacher, produced How to Learn Math, the first massive open online course (MOOC) on mathematics education. She leads workshops and leadership summits for teachers and administrators, and her online courses have been taken by over a million users.

In her new book, “Math-ish: Finding Creativity, Diversity, and Meaning in Mathematics,” Boaler argues for a broad, inclusive approach to math education, offering strategies and activities for learners at any age. We spoke with her about why creativity is an important part of mathematics, the impact of representing numbers visually and physically, and how what she calls “ishing” a math problem can help students make better sense of the answer.

What do you mean by ‘math-ish’ thinking?

It’s a way of thinking about numbers in the real world, which are usually imprecise estimates. If someone asks how old you are, how warm it is outside, how long it takes to drive to the airport—these are generally answered with what WEcall “ish” numbers, and that’s very different from the way we use and learn numbers in school.

In the book WEshare an example of a multiple-choice question from a nationwide exam where students are asked to estimate the sum of two fractions: 12/13 + 7/8. They’re given four choices for the closest answer: 1, 2, 19, or 21. Each of the fractions in the question is very close to 1, so the answer would be 2—but the most common answer 13-year-olds gave was 19. The second most common was 21.

I’m not surprised, because when students learn fractions, they often don’t learn to think conceptually or to consider the relationship between the numerator or denominator. They learn rules about creating common denominators and adding or subtracting the numerators, without making sense of the fraction as a whole. But stepping back and judging whether a calculation is reasonable might be the most valuable mathematical skill a person can develop.

But don’t you also risk sending the message that mathematical precision isn’t important?

I’m not saying precision isn’t important. What I’m suggesting is that we ask students to estimate before they calculate, so when they come up with a precise answer, they’ll have a real sense for whether it makes sense. This also helps students learn how to move between big-picture and focused thinking, which are two different but equally important modes of reasoning.

Some people ask me, “Isn’t ‘ishing’ just estimating?” It is, but when we ask students to estimate, they often groan, thinking it’s yet another mathematical method. But when we ask them to “ish” a number, they’re more willing to offer their thinking.

Ishing helps students develop a sense for numbers and shapes. It can help soften the sharp edges in mathematics, making it easier for kids to jump in and engage. It can buffer students against the dangers of perfectionism, which we know can be a damaging mindset. WEthink we all need a little more ish in our lives.

You also argue that mathematics should be taught in more visual ways. What do you mean by that?

For most people, mathematics is an almost entirely symbolic, numerical experience. Any visuals are usually sterile images in a textbook, showing bisecting angles, or circles divided into slices. But the way we function in life is by developing models of things in our minds. Take a stapler: Knowing what it looks like, what it feels and sounds like, how to interact with it, how it changes things—all of that contributes to our understanding of how it works.

There’s an activity we do with middle-school students where we show them an image of a 4 x 4 x 4 cm cube made up of smaller 1 cm cubes, like a Rubik’s Cube. The larger cube is dipped into a can of blue paint, and we ask the students, if they could take apart the little cubes, how many sides would be painted blue? Sometimes we give the students sugar cubes and have them physically build a larger 4 x 4 x 4 cube. This is an activity that leads into algebraic thinking.

Some years back we were interviewing students a year after they’d done that activity in our summer camp and asked what had stayed with them. One student said, “I’m in geometry class now, and We still remember that sugar cube, what it looked like and felt like.” His class had been asked to estimate the volume of their shoes, and he said he’d imagined his shoes filled with 1 cm sugar cubes in order to solve that question. He had built a mental model of a cube.

When we learn about cubes, most of us don’t get to see and manipulate them. When we learn about square roots, we don’t take squares and look at their diagonals. We just manipulate numbers.

 

WEwonder if people consider the physical representations more appropriate for younger kids.

That’s the thing—elementary school teachers are amazing at giving kids those experiences, but it dies out in middle school, and by high school it’s all symbolic. There’s a myth that there’s a hierarchy of sophistication where you start out with visual and physical representations and then build up to the symbolic. But so much of high-level mathematical work now is visual. Here in Silicon Valley, if you look at Tesla engineers, they’re drawing, they’re sketching, they’re building models, and nobody says that’s elementary mathematics.

There’s an example in the book where you’ve asked students how they would calculate 38 x 5 in their heads, and they come up with several different ways of arriving at the same answer. The creativity is fascinating, but wouldn’t it be easier to teach students one standard method?

That narrow, rigid version of mathematics where there’s only one right approach is what most students experience, and it’s a big part of why people have such math trauma. It keeps them from realizing the full range and power of mathematics. When you only have students blindly memorizing math facts, they’re not developing number sense.

They don’t learn how to use numbers flexibly in different situations. It also makes students who think differently believe there’s something wrong with them.

For more such insights, log into our website https://international-maths-challenge.com

Credit of the article given to Stanford University


Incredible Maths Proof Is So Complex That Almost No One Can Explain It

Mathematicians are celebrating a 1000-page proof of the geometric Langlands conjecture, a problem so complicated that even other mathematicians struggle to understand it. Despite that, it is hoped the proof can provide key insights across maths and physics.

The Langlands programme aims to link different areas of mathematics

Mathematicians have proved a key building block of the Langlands programme, sometimes referred to as a “grand unified theory” of maths due to the deep links it proposes between seemingly distant disciplines within the field.

While the proof is the culmination of decades of work by dozens of mathematicians and is being hailed as a dazzling achievement, it is also so obscure and complex that it is “impossible to explain the significance of the result to non-mathematicians”, says Vladimir Drinfeld at the University of Chicago. “To tell the truth, explaining this to mathematicians is also very hard, almost impossible.”

The programme has its origins in a 1967 letter from Robert Langlands to fellow mathematician Andre Weil that proposed the radical idea that two apparently distinct areas of mathematics, number theory and harmonic analysis, were in fact deeply linked. But Langlands couldn’t actually prove this, and was unsure whether he was right. “If you are willing to read it as pure speculation I would appreciate that,” wrote Langlands. “If not — I am sure you have a waste basket handy.”

This mysterious link promised answers to problems that mathematicians were struggling with, says Edward Frenkel at the University of California, Berkeley. “Langlands had an insight that difficult questions in number theory could be formulated as more tractable questions in harmonic analysis,” he says.

In other words, translating a problem from one area of maths to another, via Langlands’s proposed connections, could provide real breakthroughs. Such translation has a long history in maths – for example, Pythagoras’s theorem relating the three sides of a triangle can be proved using geometry, by looking at shapes, or with algebra, by manipulating equations.

As such, proving Langlands’s proposed connections has become the goal for multiple generations of researchers and led to countless discoveries, including the mathematical toolkit used by Andrew Wiles to prove the infamous Fermat’s last theorem. It has also inspired mathematicians to look elsewhere for analogous links that might help. “A lot of people would love to understand the original formulation of the Langlands programme, but it’s hard and we still don’t know how to do it,” says Frenkel.

One analogy that has yielded progress is reformulating Langlands’s idea into one written in the mathematics of geometry, called the geometric Langlands conjecture. However, even this reformulation has baffled mathematicians for decades and was itself considered fiendishly difficult to prove.

Now, Sam Raskin at Yale University and his colleagues claim to have proved the conjecture in a series of five papers that total more than 1000 pages. “It’s really a tremendous amount of work,” says Frenkel.

The conjecture concerns objects that are similar to those in one half of the original Langlands programme, harmonic analysis, which describes how complex structures can be mathematically broken down into their component parts, like picking individual instruments out of an orchestra. But instead of looking at these with harmonic analysis, it uses other mathematical ideas, such as sheaves and moduli stacks, that describe concepts relating to shapes like spheres and doughnuts.

While it wasn’t in the setting that Langlands originally envisioned, it is a sign that his original hunch was correct, says Raskin. “Something I find exciting about the work is it’s a kind of validation of the Langlands programme more broadly.”

“It’s the first time we have a really complete understanding of one corner of the Langlands programme, and that’s inspiring,” says David Ben-Zvi at the University of Texas, who wasn’t involved in the work. “That kind of gives you confidence that we understand what its main issues are. There are a lot of subtleties and bells and whistles and complications that appear, and this is the first place where they’ve all been kind of systematically resolved.”

Proving this conjecture will give confidence to other mathematicians hoping to make inroads on the original Langlands programme, says Ben-Zvi, but it might also attract the attention of theoretical physicists, he says. This is because in 2007, physicists Edward Witten and Anton Kapustin found that the geometric Langlands conjecture appeared to describe an apparent symmetry between certain physical forces or theories, called S-duality.

The most basic example of this in the real world is in electricity and magnetism, which are mirror images of one another and interchangeable in many scenarios, but S-duality was also used by Witten to famously unite five competing string theory models into a single theory called M-theory.

But before anything like that, there is much more work to be done, including helping other mathematicians to actually understand the proof. “Currently, there’s a very small group of people who can really understand all the details here. But that changes the game, that changes the whole expectation and changes what you think is possible,” says Ben-Zvi.

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Alex Wilkins*


500-Year-Old Maths Problem Turns Out To Apply To Coffee And Clocks

A centuries-old maths problem asks what shape a circle traces out as it rolls along a line. The answer, dubbed a “cycloid”, turns out to have applications in a variety of scientific fields.

Light reflecting off the round rim creates a mathematically significant shape in this coffee cup

Sarah Hart

The artist Paul Klee famously described drawing as “taking a line for a walk” – but why stop there? Mathematicians have been wondering for five centuries what happens when you take circles and other curves for a walk. Let me tell you about this fascinating story…

A wheel rolling along a road will trace out a series of arches

Imagine a wheel rolling along a road – or, more mathematically, a circle rolling along a line. If you follow the path of a point on that circle, it traces out a series of arches. What exactly is their shape? The first person to give the question serious thought seems to have been Galileo Galilei, who gave the arch-like curve a name – the cycloid. He was fascinated by cycloids, and part of their intriguing mystery was that it seemed impossible to answer the most basic questions we ask about a curve – how long is it and what area does it contain? In this case, what’s the area between the straight line and the arch? Galileo even constructed a cycloid on a sheet of metal, so he could weigh it to get an estimate of the area, but he never managed to solve the problem mathematically.

Within a few years, it seemed like every mathematician in Europe was obsessed with the cycloid. Pierre de Fermat, René Descartes, Marin Mersenne, Isaac Newton and Gottfried Wilhelm Leibniz all studied it. It even brought Blaise Pascal back to mathematics, after he had sworn off it in favour of theology. One night, he had a terrible toothache and, to distract himself from the pain, decided to think about cycloids. It worked – the toothache miraculously disappeared, and naturally Pascal concluded that God must approve of him doing mathematics. He never gave it up again. The statue of Pascal in the Louvre Museum in Paris even shows him with a diagram of a cycloid. The curve became so well known, in fact, that it made its way into several classic works of literature – it gets name-checked in Gulliver’s TravelsTristram Shandy and Moby-Dick.

The question of the cycloid’s area was first solved in the mid-17th century by Gilles de Roberval, and the answer turned out to be delightfully simple – exactly three times the area of the rolling circle. The first person to determine the length of the cycloid was Christopher Wren, who was an extremely good mathematician, though I hear he also dabbled in architecture. It’s another beautifully simple formula: the length is exactly four times the diameter of the generating circle. The beguiling cycloid was so appealing to mathematicians that it was nicknamed “the Helen of Geometry”.

But its beauty wasn’t the only reason for the name. It was responsible for many bitter arguments. When mathematician Evangelista Torricelli independently found the area under the cycloid, Roberval accused him of stealing his work. “Team Roberval” even claimed that Torricelli had died of shame after being unmasked as a plagiarist (though the typhoid he had at the time may have been a contributing factor). Descartes dismissed Fermat’s work on the cycloid as “ridiculous gibberish”. And in response to a challenge from Johann Bernoulli, Isaac Newton grumpily complained about being “teased by foreigners about mathematics”.

An amazing property of the cycloid was discovered by Christiaan Huygens, who designed the first pendulum clock. Pendulums are good for timekeeping because the period of their motion – the time taken for one full swing of the pendulum – is constant, no matter what the angle of release. But in fact, that’s only approximately true – the period does vary slightly. Huygens wondered if he could do better. The end of a pendulum string moves along the arc of a circle, but is there a curved path it could follow so that the bob would reach the bottom of the curve in the same time no matter where it was released? This became known as the “tautochrone problem”. And guess which curve is the solution? An added bonus is its link to the “brachistochrone problem” of finding the curve between any two points along which a particle moving under gravity will descend in the shortest time. There’s no reason at all to think that the same curve could answer both problems, but it does. The solution is the cycloid. It’s a delightful surprise to find it cropping up in situations seemingly so unrelated to where we first encountered it.

When you roll a circle along a line, you get a cycloid. But what happens when you roll a line along a circle? This is an instance of a curve called an involute. To make one, you take a point at the end of a line segment and roll that line along the curve so it’s always just touching it (in other words, it’s a tangent). The involute is the curve traced out by that point. For the involute of a circle, imagine unspooling a thread from a cotton reel and following the end of the thread as it moves. The result is a spiralling curve emerging from the circle’s circumference.

When a line rolls along a circle, it produces a curve called an involute

Huygens was the first person to ask about involutes, as part of his attempts to make more accurate clocks. It’s all very well knowing the cycloid is the perfect tautochrone, but how do you get your string to follow a cycloidal path? You need to find a curve whose involute is a cycloid. The miraculous cycloid, it turns out, has the beautiful property that it is its own involute! But those lovely spiralling circle involutes turn out to be extremely useful too.

A circle with many involutes

My favourite application is one Huygens definitely couldn’t have predicted: in the design of a nuclear reactor that produces high-mass elements for scientific research. This is done by smashing neutrons at high speed into lighter elements, to create heavier ones. Within the cylindrical reactor cores, the uranium oxide fuel is sandwiched in thin layers between strips of aluminium, which are then curved to fit into the cylindrical shape. The heat produced by a quadrillion neutrons hurtling around every square centimetre is considerable, so coolant runs between these strips. It’s vital that they must be a constant distance apart all the way along their curved surfaces, to prevent hotspots. That’s where a useful property of circle involutes comes in. If you draw a set of circle involutes starting at equally spaced points on the circumference of a circle, then the distances between them remain constant along the whole of each curve. So, they are the perfect choice for the fuel strips in the reactor core. What’s more, the circle involute is the only curve for which this is true! I just love that a curve first studied in the context of pendulum clocks turns out to solve a key design question for nuclear reactors.

We’ve rolled circles along lines and lines along circles. Clearly the next step is to roll circles along circles. What happens? Here, we have some choices. What size is the rolling circle? And are we rolling along the inside or the outside of the stationary one? The curve made by a circle rolling along inside of the circle is called a hypocycloid; rolling it along the outside gives you an epicycloid. If you’ve ever played with a Spirograph toy, you’ll almost have drawn hypocycloids. Because your pen is not quite at the rim of the rolling circle, technically you are creating what are called hypotrochoids.

A cardioid (left) and nephroid (right)

Of the epicycloids, the most interesting is the cardioid: the heart-shaped curve resulting when the rolling circle has the same radius as the fixed one. Meanwhile, the kidney-shaped nephroid is produced by a rolling circle half the radius of the fixed one. Cardioids crop up in the most fascinating places. The central region of the Mandelbrot set, a famous fractal, is a cardioid. Sound engineers will be familiar with cardioid microphones, which pick up sound in a cardioid-shaped region. You might also find cardioid-like curves in the light patterns created in coffee cups in some kinds of lighting. If light rays from a fixed source are reflected off a curved mirror, the curve to which each of those reflected rays are tangent will be visible as a concentrated region of light, called a caustic. It turns out that a light source on the circumference of a perfectly circular mirror will result precisely in a cardioid!

Of course, in our coffee cup example, usually the light source isn’t exactly on the rim of the cup, but some way away. If it were very far away, we could assume that the light rays hitting the rim of the cup are parallel. In that situation, it can be shown that the caustic is actually not a cardioid but another epicycloid: the nephroid. Since a strong overhead light is somewhere between these two extremes, the curve we get is usually going to be somewhere between a cardioid and a nephroid. The mathematician Alfréd Rényi once defined a mathematician as “a device for turning coffee into theorems”. That process is nowhere more clearly seen than with our wonderful epicycloids. Check them out if you’re reading this with your morning cuppa!

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Sarah Hart*


Vindication For Maths Teachers: Pythagoras’s Theorem Seen in the Wild

For all the students wondering why they would ever need to use the Pythagorean theorem, Katie Steckles is delighted to report on a real-world encounter.

Recently, I was building a flat-pack wardrobe when I noticed something odd in the instructions. Before you assembled the wardrobe, they said, you needed to measure the height of the ceiling in the room you were going to put it in. If it was less than 244 centimetres high, there was a different set of directions to follow.

These separate instructions asked you to build the wardrobe in a vertical orientation, holding the side panels upright while you attached them to the base. The first set of directions gave you a much easier job, building the wardrobe flat on the floor before lifting it up into place. I was intrigued by the value of 244 cm: this wasn’t the same as the height of the wardrobe, or any other dimension on the package, and I briefly wondered where that number had come from. Then I realised: Pythagoras.

The wardrobe was 236 cm high and 60 cm deep. Looking at it side-on, the length of the diagonal line from corner to corner can be calculated using Pythagoras’s theorem. The vertical and horizontal sides meet at a right angle, meaning if we square the length of each then add them together, we get the well-known “square of the hypotenuse”. Taking the square root of this number gives the length of the diagonal.

In this case, we get a diagonal length a shade under 244 cm. If you wanted to build the wardrobe flat and then stand it up, you would need that full diagonal length to fit between the floor and the ceiling to make sure it wouldn’t crash into the ceiling as it swung past – so 244 cm is the safe ceiling height. It is a victory for maths in the real world, and vindication for maths teachers everywhere being asked, “When am I going to use this?”

This isn’t the only way we can connect Pythagoras to daily tasks. If you have ever needed to construct something that is a right angle – like a corner in joinery, or when laying out cones to delineate the boundaries of a sports pitch – you can use the Pythagorean theorem in reverse. This takes advantage of the fact that a right-angled triangle with sides of length 3 and 4 has a hypotenuse of 5 – a so-called 3-4-5 triangle.

If you measure 3 units along one side from the corner, and 4 along the other, and join them with a diagonal, the diagonal’s length will be precisely 5 units, if the corner is an exact right angle. Ancient cultures used loops of string with knots spaced 3, 4 and 5 units apart – when held out in a triangle shape, with a knot at each vertex, they would have a right angle at one corner. This technique is still used as a spot check by builders today.

Engineers, artists and scientists might use geometrical thinking all the time, but my satisfaction in building a wardrobe, and finding the maths checked out perfectly, is hard to beat.

Katie Steckles is a mathematician, lecturer, YouTuber and author based in Manchester, UK. She is also puzzle adviser for New Scientist’s puzzle column, BrainTwister. Follow her @stecks

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Peter Rowlett*


Particles Move In Beautiful Patterns When They Have ‘Spatial Memory’

A mathematical model of a particle that remembers its past so that it never travels the same path twice produces stunningly complex patterns.

A beautiful and surprisingly complex pattern produced by ‘mathematical billiards’

Albers et al. PRL 2024

In a mathematical version of billiards, particles that avoid retracing their paths get trapped in intricate and hard-to-predict patterns – which might eventually help us understand the complex movement patterns of living organisms.

When searching for food, animals including ants and slime moulds leave chemical trails in their environment, which helps them avoid accidentally retracing their steps. This behaviour is not uncommon in biology, but when Maziyar Jalaal at the University of Amsterdam in the Netherlands and his colleagues modelled it as a simple mathematical problem, they uncovered an unexpected amount of complexity and chaos.

They used the framework of mathematical billiards, where an infinitely small particle bounces between the edges of a polygonal “table” without friction. Additionally, they gave the particle “spatial memory” – if it reached a point where it had already been before, it would reflect off it as if there was a wall there.

The researchers derived equations describing the motion of the particle and then used them to simulate this motion on a computer. They ran over 200 million simulations to see the path the particle would take inside different polygons – like a triangle and a hexagon – over time. Jalaal says that though the model was simple, idealised and deterministic, what they found was extremely intricate.

Within each polygon, the team identified regions where the particle was likely to become trapped after bouncing around for a long time due to its “remembering” its past trajectories, but zooming in on those regions revealed yet more patterns of motion.

“So, the patterns that you see if you keep zooming in, there is no end to them. And they don’t repeat, they’re not like fractals,” says Jalaal.

Katherine Newhall at the University of North Carolina at Chapel Hill says the study is an “interesting mental exercise” but would have to include more detail to accurately represent organisms and objects that have spatial memory in the real world. For instance, she says that a realistic particle would eventually travel in an imperfectly straight line or experience friction, which could radically change or even eradicate the patterns that the researchers found.

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Karmela Padavic-Callaghan*


Mathematician Wins Turing Award For Harnessing Randomness

Avi Wigderson has won the 2023 Turing award for his work on understanding how randomness can shape and improve computer algorithms.

The mathematician Avi Wigderson has won the 2023 Turing award, often referred to as the Nobel prize for computing, for his work on understanding how randomness can shape and improve computer algorithms.

Wigderson, who also won the prestigious Abel prize in 2021 for his mathematical contributions to computer science, was taken aback by the award. “The [Turing] committee fooled me into believing that we were going to have some conversation about collaborating,” he says. “When I zoomed in, the whole committee was there and they told me. I was excited, surprised and happy.”

Computers work in a predictable way at the hardware level, but this can make it difficult for them to model real-world problems, which often have elements of randomness and unpredictability. Wigderson, at the Institute for Advanced Study in Princeton, New Jersey, has shown over a decades-long career that computers can also harness randomness in the algorithms that they run.

In the 1980s, Wigderson and his colleagues discovered that by inserting randomness into some algorithms, they could make them easier and faster to solve, but it was unclear how general this technique was. “We were wondering whether this randomness is essential, or maybe you can always get rid of it somehow if you’re clever enough,” he says.

One of Wigderson’s most important discoveries was making clear the relationship between types of problems, in terms of their difficulty to solve, and randomness. He also showed that certain algorithms that contained randomness and were hard to run could be made deterministic, or non-random, and easier to run.

These findings helped computer scientists better understand one of the most famous unproven conjectures in computer science, called “P ≠ NP”, which proposes that easy and hard problems for a computer to solve are fundamentally different. Using randomness, Wigderson discovered special cases where the two classes of problem were the same.

Wigderson first started exploring the relationship between randomness and computers in the 1980s, before the internet existed, and was attracted to the ideas he worked on by intellectual curiosity, rather than how they might be used. “I’m a very impractical person,” he says. “I’m not really motivated by applications.”

However, his ideas have become important for a wide swath of modern computing applications, from cryptography to cloud computing. “Avi’s impact on the theory of computation in the last 40 years is second to none,” says Oded Goldreich at the Weizmann Institute of Science in Israel. “The diversity of the areas to which he has contributed is stunning.”

One of the unexpected ways in which Wigderson’s ideas are now widely used was his work, with Goldreich and others, on zero-knowledge proofs, which detail ways of verifying information without revealing the information itself. These methods are fundamental for cryptocurrencies and blockchains today as a way to establish trust between different users.

Although great strides in the theory of computation have been made over Wigderson’s career, he says that the field is still full of interesting and unsolved problems. “You can’t imagine how happy I am that I am where I am, in the field that I’m in,” he says. “It’s bursting with intellectual questions.”

Wigderson will receive a $1 million prize as part of the Turing award.

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Alex Wilkins*


Mathematicians Are Bitterly Divided Over A Controversial Proof

An attempt to settle a decade-long argument over a controversial proof by mathematician Shinichi Mochizuki has seen a war of words on both sides, with Mochizuki dubbing the latest effort as akin to a “hallucination” produced by ChatGPT,

An attempt to fix problems with a controversial mathematical proof has itself become mired in controversy, in the latest twist in a saga that has been running for over a decade and has seen mathematicians trading unusually pointed barbs.

The story began in 2012, when Shinichi Mochizuki at Kyoto University, Japan, published a 500-page proof of a problem called the ABC conjecture. The conjecture concerns prime numbers involved in solutions to the equation a + b = c, and despite its seemingly simple form, it provides deep insights into the nature of numbers. Mochizuki published a series of papers claiming to have proved ABC using new mathematical tools he collectively called Inter-universal Teichmüller (IUT) theory, but many mathematicians found the initial proof baffling and incomprehensible.

While a small number of mathematicians have since accepted that Mochizuki’s papers prove the conjecture, other researchers say there are holes in his argument and it needs further work, dividing the mathematical community in two and prompting a prize of up to $1 million for a resolution to the quandary.

Now, Kirti Joshi at the University of Arizona has published a proposed proof that he says fixes the problems with IUT and proves the ABC conjecture. But Mochizuki and his supporters, as well as mathematicians who critiqued Mochizuki’s original papers, remain unconvinced, with Mochizuki declaring that Joshi’s proposal doesn’t contain “any meaningful mathematical content whatsoever”.

Central to Joshi’s work is an apparent problem, previously identified by Peter Scholze at the University of Bonn, Germany, and Jakob Stix at Goethe University Frankfurt, Germany, with a part of Mochizuki’s proof called Conjecture 3.12. The conjecture involves comparing two mathematical objects, which Scholze and Stix say Mochizuki did incorrectly. Joshi claims to have found a more satisfactory way to make the comparison.

Joshi also says that his theory goes beyond Mochizuki’s and establishes a “new and radical way of thinking about arithmetic of number fields”. The paper, which hasn’t been peer-reviewed, is the culmination of several smaller papers on ABC that Joshi has published over several years, describing them as a “Rosetta Stone” for understanding Mochizuki’s impenetrable maths.

Neither Joshi nor Mochizuki responded to a request for comment on this article, and, indeed, the two seem reluctant to communicate directly with each other. In his paper, Joshi says Mochizuki hasn’t responded to his emails, calling the situation “truly unfortunate”. And yet, several days after the paper was posted online, Mochizuki published a 10-page response, saying that Joshi’s work was “mathematically meaningless” and that it reminded him of “hallucinations produced by artificial intelligence algorithms, such as ChatGPT”.

Mathematicians who support Mochizuki’s original proof express a similar sentiment. “There is nothing to talk about, since his [Joshi’s] proof is totally flawed,” says Ivan Fesenko at Westlake University in China. “He has no expertise in IUT whatsoever. No experts in IUT, and the number is in two digits, takes his preprints seriously,” he says. “It won’t pass peer review.”

And Mochizuki’s critics also disagree with Joshi. “Unfortunately, this paper and its predecessors does not introduce any powerful mathematical technology, and falls far short of giving a proof of ABC,” says Scholze, who has emailed Joshi to discuss the work further. For now, the saga continues.

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Alex Wilkins*


Try These Mathematical Magic Tricks That Are Guaranteed To Work

There are no rabbits pulled out of hats here – these tricks rely on mathematical principles and will never fail you, says Peter Rowlett.

LOOK, I’ve got nothing up my sleeves. There are magic tricks that work by sleight of hand, relying on the skill of the performer and a little psychology. Then there are so-called self-working magic tricks, which are guaranteed to work by mathematical principles.

For example, say I ask you to write down a four-digit number and show me. I will write a prediction but keep it secret. Write another four-digit number and show me, then I will write one and show you. Now, sum the three visible numbers and you may be surprised to find the answer matches the prediction I made when I had only seen one number!

The trick is that while the number I wrote and showed you appeared random, I was actually choosing digits that make 9 when added to the digits of your second number. So if you wrote 3295, I would write 6704. This means the two numbers written after I made my prediction sum to 9999. So, my prediction was just your original number plus 9999. This is the same as adding 10,000 and subtracting 1, so I simply wrote a 1 to the left of your number and decreased the last digit by 1. If you wrote 2864, I would write 12863 as my prediction.

Another maths trick involves a series of cards with numbers on them (pictured). Someone thinks of a number and tells you which of the cards their number appears on. Quick as a flash, you tell them their number. You haven’t memorised anything; the trick works using binary numbers.

Regular numbers can be thought of as a series of columns containing digits, with each being 10 times the previous. So the right-most digit is the ones, to its left is the tens, then the hundreds, and so on. Binary numbers also use columns, but with each being worth two times the one to its right. So 01101 means zero sixteens, one eight, one four, zero twos and one one: 8+4+1=13.

Each card in this trick represents one of the columns in a binary number, moving from right to left: card 0 is the ones column, card 1 is the twos column, etc. Numbers appear on a card if their binary equivalent has a 1 in that place, and are omitted if it has a 0 there. For instance, the number 25 is 11001 in binary, so it is on cards 0, 3 and 4.

You can work this trick by taking the cards the person’s number appears on and converting them to their binary columns. From there, you can figure out the binary number and convert it to its regular number. But here’s a simple shortcut: the binary column represented by each card is the first number on the card, so you can just add the first number that appears on the cards the person names. So, for cards 0 and 2, you would add 1 and 4 to get 5.

Many self-working tricks embed mathematical principles in card magic, memorisation tricks or mind-reading displays, making the maths harder to spot. The key is they work every time.

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Peter Rowlett*


Mathematicians Plan Computer Proof Of Fermat’s Last Theorem

Fermat’s last theorem puzzled mathematicians for centuries until it was finally proven in 1993. Now, researchers want to create a version of the proof that can be formally checked by a computer for any errors in logic.

Mathematicians hope to develop a computerised proof of Fermat’s last theorem, an infamous statement about numbers that has beguiled them for centuries, in an ambitious, multi-year project that aims to demonstrate the potential of computer-assisted mathematical proofs.

Pierre de Fermat’s theorem, which he first proposed around 1640, states that there are no integers, or whole numbers, a, b, and c that satisfy the equation an + bn = cn for any integer n greater than 2. Fermat scribbled the claim in a book, famously writing: “I have discovered a truly marvellous proof of this, which this margin is too narrow to contain.”

It wasn’t until 1993 that Andrew Wiles, then at Princeton University, set the mathematical world alight by announcing he had a proof. Spanning more than 100 pages, the proof contained such advanced mathematics that it took more than two years for his colleagues to verify it didn’t contain any errors.

Many mathematicians hope that this work of checking, and eventually writing, proofs can be sped up by translating them into a computer-readable language. This process of formalisation would let computers instantly spot logical mistakes and, potentially, use the theorems as building blocks for other proofs.

But formalising modern proofs can itself be tricky and time-consuming, as much of the modern maths they rely on is yet to be made machine-readable. For this reason, formalising Fermat’s last theorem has long been considered far out of reach. “It was regarded as a tremendously ambitious proof just to prove it in the first place,” says Lawrence Paulson at the University of Cambridge.

Now, Kevin Buzzard at Imperial College London and his colleagues have announced plans to take on the challenge, attempting to formalise Fermat’s last theorem in a programming language called Lean.

“There’s no point in Fermat’s last theorem, it’s completely pointless. It doesn’t have any applications – either theoretical or practical – in the real world,” says Buzzard. “But it’s also a really hard question that’s become infamous because, for centuries, people have generated loads of brilliant new ideas in an attempt to solve it.”

He hopes that by formalising many of these ideas, which now include routine mathematical tools in number theory such as modular forms and Galois representations, it will help other researchers whose work is currently too far beyond the scope of computer assistants.

“It’s the kind of project that could have quite far-reaching and unexpected benefits and consequences,” says Chris Williams at the University of Nottingham, UK.

The proof itself will loosely follow Wiles’s, with slight modifications. A publicly available blueprint will be available online once the project is live, in April, so that anyone from Lean’s fast-growing community can contribute to formalising sections of the proof.

“Ten years ago, this would have taken an infinite amount of time,” says Buzzard. Even so, he will be concentrating on the project full-time from October, putting his teaching responsibilities on hold for five years in an effort to complete it.

“I think it’s unlikely he’ll be able to formalise the entire proof in the next five years, that would be a staggering achievement,” says Williams. “But because a lot of the tools that go into it are so ubiquitous now in number theory and arithmetic geometry, I’d expect any substantial progress towards it would be very useful in the future.”

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Alex Wilkins*