Mathematical Method For Spectral Density Estimation Set To Unlock Ocean Mysteries

Researchers at The University of Western Australia’s ARC Industrial Transformation Research Hub for Transforming Energy Infrastructure through Digital Engineering (TIDE) have made a significant mathematical breakthrough that could help transform ocean research and technology.

Research Fellow Dr. Lachlan Astfalck, from UWA’s School of Physics, Mathematics and Computing, and his team developed a new method for spectral density estimation, addressing long-standing biases and paving the way for more accurate oceanographic studies.

The study was published in the journal Biometrika, known for its emphasis on original methodological and theoretical contributions of direct or potential value in applications.

“Understanding the ocean is crucial for numerous fields, including offshore engineering, climate assessment and modeling, renewable technologies, defense and transport,” Dr. Astfalck said.

“Our new method allows researchers and industry professionals to advance ocean technologies with greater confidence and accuracy.”

Spectral density estimation is a mathematical technique used to measure the energy contribution of oscillatory signals, such as waves and currents, by identifying which frequencies carry the most energy.

“Traditionally, Welch’s estimator has been the go-to method for this analysis due to its ease of use and widespread citation, however this method has an inherent risk of bias, which can distort the expected estimates based on the model’s assumption, a problem often overlooked,” Dr. Astfalck said.

The TIDE team developed the debiased Welch estimator, which uses non-parametric statistical learning to remove these biases.

“Our method improves the accuracy and reliability of spectral calculations without requiring specific assumptions about the data’s shape or distribution, which is particularly useful when dealing with complex data that doesn’t follow known analytical patterns, such as internal tides in oceanic shelf regions,” Dr. Astfalck said.

The new method was recently applied in a TIDE research project by Senior Lecturer at UWA’s Oceans Graduate School and TIDE collaborator, Dr. Matt Rayson, to look at complex non-linear ocean processes.

“The ocean is difficult to measure and understand and the work we are doing is all about uncovering some of those mysteries,” Dr. Rayson said.

“The new method means we can better understand ocean processes, climate models, ocean currents and sediment transport, bringing us closer to developing the next generation of numerical ocean models.

For more insights like this, visit our website at www.international-maths-challenge.com.

Credit of the article given to University of Western Australia.

 


AI Is Helping Mathematicians Build A Periodic Table Of Shapes

Atomic shapes are so simple that they can’t be broken down any further. Mathematicians are trying to build a “periodic table” of these shapes, and they hope artificial intelligence can help.

Mathematicians attempting to build a “periodic table” of shapes have turned to artificial intelligence for help – but say they don’t understand how it works or whether it can be 100 per cent reliable.

Tom Coates at Imperial College London and his colleagues are working to classify shapes known as Fano varieties, which are so simple that they can’t be broken down into smaller components. Just as chemists arranged elements in the periodic table by their atomic weight and group to reveal new insights, the researchers hope that organising these “atomic” shapes by their various properties will help in understanding them.

The team has assigned each atomic shape a sequence of numbers derived from features such as the number of holes it has or the extent to which it twists around itself. This acts as a bar code to identify it.

Coates and his colleagues have now created an AI that can predict certain properties of these shapes from their bar code numbers alone, with an accuracy of 98 per cent – suggesting a relationship that some mathematicians intuitively thought might be real, but have found impossible to prove.

Unfortunately, there is a vast gulf between demonstrating that something is very often true and mathematically proving that it is always so. While the team suspects a one-to-one connection between each shape and its bar code, the mathematics community is “nowhere close” to proving this, says Coates.

“In pure mathematics, we don’t regard anything as true unless we have an actual proof written down on a piece of paper, and no advances in our understanding of machine learning will get around this problem,” says team member Alexander Kasprzyk at the University of Nottingham, UK.

Even without a proven link between the Fano varieties and bar codes, Kasprzyk says that the AI has let the team organise atomic shapes in a way that begins to mimic the periodic table, so that when you read from left to right, or up and down, there seem to be generalisable patterns in the geometry of the shapes.

“We had no idea that would be true, we had no idea how to begin doing it,” says Kasprzyk. “We probably would still not have had any idea about this in 50 years’ time. Frankly, people have been trying to study these things for 40 years and failing to get to a picture like this.”

The team hopes to refine the model to the point where missing spaces in its periodic table could point to the existence of unknown shapes, or where clustering of shapes could lead to logical categorisation, resulting in a better understanding and new ideas that could create a method of proof. “It clearly knows more things than we know, but it’s so mysterious right now,” says team member Sara Veneziale at Imperial College London.

Graham Niblo at the University of Southampton, UK, who wasn’t involved in the research, says that the work is akin to forming an accurate picture of a cello or a French horn just from the sound of a G note being played – but he stresses that humans will still need to tease understanding from the results provided by AI and create robust and conclusive proofs of these ideas.

“AI has definitely got uncanny abilities. But in the same way that telescopes didn’t put astronomers out of work, AI doesn’t put mathematicians out of work,” he says. “It just gives us a new tool that allows us to explore parts of the mathematical landscape that were out of reach, or, like a microscope, that were too obscure for us to notice with our current understanding.”

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Matthew Sparkes *


Should All Mathematical Proofs Be Checked By A Computer?

Proofs, the central tenet of mathematics, occasionally have errors in them. Could computers stop this from happening, asks mathematician Emily Riehl.

Computer proof assistants can verify that mathematical proofs are correct

One miserable morning in 2017, in the third year of my tenure-track job as a mathematics professor, I woke up to a worrying email. It was from a colleague and he questioned the proof of a key theorem in a highly cited paper I had co-authored. “I had always kind of assumed that this was probably not true in general, though I have no proof either way. Did I miss something?” he asked. The proof, he noted, appeared to rest on a tacit assumption that was not warranted.

Much to my alarm and embarrassment, I realised immediately that my colleague was correct. After an anxious week working to get to the bottom of my mistake, it turned out I was very lucky. The theorem was true; it just needed a new proof, which my co-authors and I supplied in a follow-up paper. But if the theorem had been false, the whole edifice of consequences “proven” using it would have come crashing down.

The essence of mathematics is the concept of proof: a combination of assumed axioms and logical inferences that demonstrate the truth of a mathematical statement. Other mathematicians can then attempt to follow the argument for themselves to identify any holes or convince themselves that the statement is indeed true. Patched up in this way, theorems originally proven by the ancient Greeks about the infinitude of primes or the geometry of planar triangles remain true today – and anyone can see the arguments for why this must be.

Proofs have meant that mathematics has largely avoided the replication crises pervading other sciences, where the results of landmark studies have not held up when the experiments were conducted again. But as my experience shows, mistakes in the literature still occur. Ideally, a false claim, like the one I made, would be caught by the peer review process, where a submitted paper is sent to an expert to “referee”. In practice, however, the peer review process in mathematics is less than perfect – not just because experts can make mistakes themselves, but also because they often do not check every step in a proof.

This is not laziness: theorems at the frontiers of mathematics can be dauntingly technical, so much so that it can take years or even decades to confirm the validity of a proof. The mathematician Vladimir Voevodsky, who received a Fields medal, the discipline’s highest honour, noted that “a technical argument by a trusted author, which is hard to check and looks similar to arguments known to be correct, is hardly ever checked in detail”. After several experiences in which mistakes in his proofs took over a decade to be resolved – a long time for something to sit in logical limbo – Voevodsky’s subsequent crisis of confidence led him to take the unusual step of abandoning his “curiosity-driven research” to develop a computer program that could verify the correctness of his work.

This kind of computer program is known as a proof assistant, though it might be better called a “proof checker”. It can verify that a string of text proves the stated theorem. The proof assistant knows the methods of logical reasoning and is equipped with a library of proofs of standard results. It will accept a proof only after satisfying each step in the reasoning process, with no shortcuts of the sort that human experts often use.

For instance, a computer can verify that there are infinitely many prime numbers by validating the following proof, which is an adaptation of Greek mathematician Euclid’s argument. The human mathematician first tells the computer exactly what is being claimed – in this case that for any natural number N there is always some prime number p that is larger. The human then tells the computer the formula, defining p to be the minimum prime factor of the number formed by multiplying all the natural numbers up to N together and adding 1, represented as N! + 1.

For the computer proof assistant to make sense of this, it needs a library that contains definitions of the basic arithmetic operations. It also needs proofs of theorems, like the fundamental theorem of arithmetic, which tells us that every natural number can be factored uniquely into a product of primes. The proof assistant then demands a proof that this prime number p is greater than N. This is argued by contradiction – a technique where following an assumption to its conclusion leads to something that cannot possibly be true, demonstrating that the original assumption was false. In this case, if p is less than or equal to N, it should be a factor of both N! + 1 and N!. Some simple mathematics says this means that p must also be a factor of 1, which is absurd.

Computer proof assistants can be used to verify proofs that are so long that human referees are unable to check every step. In 1998, for example, Samuel Ferguson and Thomas Hales announced a proof of Johannes Kepler’s 1611 conjecture that the most efficient way to pack spheres into three-dimensional space is the familiar “cannonball” packing. When their result was accepted for publication in 2005 it came with a caveat: the journal’s reviewers attested to “a strong degree of conviction of the essential correctness of this proof approach” – they declined to certify that every step was correct.

Ferguson and Hales’s proof was based on a strategy proposed by László Fejes Tóth in 1953, which reduced the Kepler conjecture to an optimisation problem in a finite number of variables. Ferguson and Hales figured out how to subdivide this optimisation problem into a few thousand cases that could be solved by linear programming, which explains why human referees felt unable to vouch for the correctness of each calculation. In frustration, Hales launched a formalisation project, where a team of mathematicians and computer scientists meticulously verified every logical and computational step in the argument. The resulting 22-author paper was published in 2017 to as much fanfare as the original proof announcement.

Computer proof assistants can also be used to verify results in subfields that are so technical that only specialists understand the meaning of the central concepts. Fields medallist Peter Scholze spent a year working out the proof of a theorem that he wasn’t quite sure he believed and doubted anyone else would have the stamina to check. To be sure that his reasoning was correct before building further mathematics on a shaky foundation, Scholze posed a formalisation challenge in a SaiBlog post entitled the “liquid tensor experiment” in December 2020. The mathematics involved was so cutting edge that it took 60,000 lines of code to formalise the last five lines of the proof – and all the background results that those arguments relied upon – but nevertheless this project was completed and the proof confirmed this past July by a team led by Johan Commelin.

Could computers just write the proofs themselves, without involving any human mathematicians? At present, large language models like ChatGPT can fluently generate mathematical prose and even output it in LaTeX, a typesetting program for mathematical writing. However, the logic of these “proofs” tends to be nonsense. Researchers at Google and elsewhere are looking to pair large language models with automatically generated formalised proofs to guarantee the correctness of the mathematical arguments, though initial efforts are hampered by sparse training sets – libraries of formalised proofs are much smaller than the collective mathematical output. But while machine capabilities are relatively limited today, auto-formalised maths is surely on its way.

In thinking about how the human mathematics community might wish to collaborate with computers in the future, we should return to the question of what a proof is for. It’s never been solely about separating true statements from false ones, but about understanding why the mathematical world is the way it is. While computers will undoubtedly help humans check their work and learn to think more clearly – it’s a much more exacting task to explain mathematics to a computer than it is to explain it to a kindergartener – understanding what to make of it all will always remain a fundamentally human endeavour.

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Emily Riehl*


Metaphors and Mathematics 4

If mathematics is a game, then playing some game is doing mathematics, and in that case why isn’t dancing mathematics too?

Ludwig Wittgenstein – Remarks on the Foundations of Mathematics

Mathematics is often described metaphorically – the  forms that these metaphors take include the organic, mechanical, classical, and post-modern, among countless others. Within these metaphors, mathematics may be a tool, or set of tools, a tree, part of a tree, a vine, a game, or set of games, and mathematicians in turn may be machines, game-players, artists, inventors, or explorers.

Despite the many metaphors used to describe mathematics, in popular discourse mathematics is often reduced to one of its parts, being metonymically described as merely about numbers, formulas, or some other limited aspect. Metaphor is a more complete substitution of ideas than metonymy – allowing us to link concepts that do not appear to have any direct relationship. Perhaps, metaphoric language that elevates and expands our ideas about mathematics is used by enthusiasts to counter the more limited and diminishing metonymic descriptions that are often encountered.

Attempts to describe and elevate mathematics through metaphor seem to fall short, however. Our usual way of thinking about things is to inquire about their meaning – a meaning that is assumed to lie beneath or beyond mere appearances. Metaphor generally relies on making connections between concepts on this deeper level. The sheer formalism of mathematics frustrates this usual way of thinking, and leaves us grasping for a meaning that is constantly evasive. The sheer number and variety of the  many metaphors for mathematics suggests that no single convincing one has yet been found. It may be that the repeated attempts to find such a unifying metaphor represents an ongoing and forever failing attempt to grapple with the purely formal character of mathematics; and it may be that the formal nature of mathematics will always shake off any metaphor that attempts to tie it down.

 

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to dan.mackinnon*

 


Metaphors and Mathematics 3

In many traditions, Biedermann’s Dictionary of Symbols tells us, “the tree was widely seen as the axis mundi around which the cosmos is organized” and, as mentioned in a previous post, has been widely used to describe the relationship between mathematics and other sciences. Mathematics itself, like many subjects, is often portrayed as a tree whose sub-topics make up branches that continue to grow and bifurcate.

Some recent articles have take a more postmodern perspective on using the tree metaphor to describe mathematics.

Dan Kennedy ‘s “Climbing around on the Tree of Mathematics,” (full text here) and Greg McColm’s “A Metaphor for Mathematics Education” are two recent articles that make arguments by analogy about what mathematics is and how it should be taught. In Kennedy’s argument, mathematics is a tree, while in McColm’s it is a vine – both are organic, growing, and branching. What distinguishes these two uses of metaphor from traditional tree analogies is that both authors are not at all suggesting that we can stand back and survey the structure as a whole and understand how all its parts are related. The ability to provide a comprehensive view of the subject, to make it surveyable, was the raison-d’être of metaphors like the “Tree of Science.” Instead of using the metaphor this way, both authors suggest that we think of ourselves as part of the growing structure – as climbers and gardeners who cannot see the complex organic whole, but who can explore and tend to our small part of it. In these descriptions, natural forms like trees and plants, once metaphors for simplicity and comprehensibility, now provide metaphors for complexity.

Up in the Tree of Mathematics, Kennedy suggests that working mathematicians are labouring at extending its outer branches. This is where the view is best, where the fruit is found, and where the beauty of mathematics can be seen most clearly. School Mathematics is part of the trunk, the solid, oldest, stable part of the tree, and math teachers spend their time helping students climb the trunk, hoping that some may one day reach its outer branches. Unfortunately, the difficulty of the trunk prevents most people from ever climbing beyond it. Kennedy suggests that we should be less concerned with the trunk than with the branches, and that technology can provide a ladder to assist the climb.

McColm’s Mathematical Vine is not mathematics itself, but a structure that clings to the underlying reality of mathematical truth. Mathematics, in this analogy, is like a hidden tower, whose shape can only be seen by looking at the vine that has taken shape around it. Like in Kennedy’s analogy, working mathematicians are the caretakers who help the structure grow. For McColm, this analogy emphasizes the importance of mathematics education – a process of strengthening the vine so that it may continue to grow. Perhaps because his audience is primarily post-secondary researchers, he does not advocate finding shortcuts to “higher” views, but rather suggests that education be promoted through “tending to the vine” – clarifying mathematics and strengthening connections between different branches.

Although they suggest more of a structure at play, rather that a stable unified whole, organic metaphors like those used by McColm and Kennedy continue to suggest a natural unity among the various parts of mathematics. In that sense they are still rooted (or centered), and, although they have somewhat destabilized the tree analogy, they haven’t quite deconstructed it. They have not, for example, gone quite as far as Wittgenstein, who seemed to suggest that metaphors that attempt to link the subjects of mathematics in a defining way like this are misguided. In his view, as described by Ackerman (1988, p. 115):

mathematics is an assemblage of language games, having no sharp and uniform external boundary, with potentially confusing and criss-crossing subdisciplines held together by an internal network of analogous proof techniques.

It is easy to appreciate how some climbers in Kennedy’s trees and McColm’s vines end up like the protagonist in Roz Chast’s cartoon “Falling off the Math Cliff”, where step 1 is “A boy begins his wondrous journey,” and step 8 is “The plummet.”

The images in this post are “Pythagoras Tree” fractals, made using GSP.

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to dan.mackinnon*


Metaphors and Mathematics 2

Robert Recorde, author the first English textbook on algebra (published in 1557), chose to give his book the metaphorical title The Whetstone of Witte to encourage people to take up the new and difficult practice of algebra. The metaphor of a whetstone, or blade-sharpener, suggests that algebra is not only useful, but also good mental exercise. In the verse that he included on its title page, he writes,

Its use is great, and more than one. Here if you lift your wits to wet, Much sharpness thereby shall you get. Dull wits hereby do greatly mend, Sharp wits are fined to their full end.

Mathematics, and algebra in particular, according to The Whetstone of Witte is like a knife-sharpener for the brain. Four hundred years later, in his book Mathematician’s Delight (1961), W.W. Sawyer takes up a similar metaphor, suggesting that “Mathematics is like a chest of tools: before studying the tools in detail, a good workman should know the object of each, when it is used, how it is used.” Whether they describe mathematics as a sharpener or other tool, these mechanical metaphors are commonly used to emphasize the practicality and versatility of mathematics, particularly when employed in engineering or science, and suggest that it should be used thoughtfully, and with precision.

An often quoted mechanical metaphor that suggests a more frantic and less precise process of mathematical creation is often attributed to Paul Erdos: “a mathematician is a machine for turning coffee into theorems.”

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to dan.mackinnon*

 


Metaphors and Mathematics 1

When asked to describe mathematics we often resort to metaphor rather than attempt to provide strict definitions. These pictures from high school math textbooks from the 1930s are an example of this tendancy.

The simple hierarchies of these images resolve the complicated relationship between mathematics and science by appealing to our desire for an organic unity among disciplines, giving mathematics a foundational role within the general concept of science. These images are appealing, but do not stand up to scrutiny.

The simple relationship between mathematics and science becomes complicated when mathematics is described, as it sometimes is, as a science itself. It’s definition as “the science of space and quantity” is further complicated by the caveat that it is an exact deductive science, unlike the usual inductive kind. Following this line of thinking further, mathematics is then described as a kind of meta-science, or a limit point to which science might aspire – science emptied of all of its empirical content, a science of pure thought. While some view mathematics as a foundation for science, others as a supra-science, the emerging field of experimental mathematics brings mathematics back into the empirical fold, reducing it (or elevating it) to a science like any other. So, mathematics can be seen as root, branch, or even the form of the tree itself.

Thinking about these things for even a short while evokes some sympathy with Bertrand Russell’s remark that “mathematics may be defined as the subject in which we never know what we are talking about, nor whether what we are saying is true.”

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to dan.mackinnon*


Deepmind Created a Maths AI That Can Add Up To 6 But Gets 7 Wrong

Artificial intelligence firm DeepMind has tackled games like Go and Starcraft, but now it is turning its attention to more sober affairs: how to solve school-level maths problems.

Researchers at the company tasked an AI with teaching itself to solve arithmetic, algebra and probability problems, among others. It didn’t do a very good job: when the neural network was tested on a maths exam taken by 16-year-olds in the UK, it got just 14 out of 40 questions correct, or the equivalent of an E grade.

There were also strange quirks in the AI’s ability. For example, it could successfully add up 1+1+1+1+1+1 to make 6, but failed when an extra 1 was added. On the other hand, it gave the correct answer for longer sequences and much bigger numbers.

Other oddities included the ability to correctly answer 68 to the question “calculate 17×4.”, but when the full stop was removed, the answer came out at 69.

Puzzling behaviour

The DeepMind researchers concede they don’t have a good explanation for this behaviour. “At the moment, learning systems like neural networks are quite bad at doing ‘algebraic reasoning’,” says David Saxton, one of the team behind the work.

Despite this, it is still worth trying to teach a machine to solve maths problems, says Marcus du Sautoy, a mathematician at the University of Oxford.

“There are already algorithms out there to do these problems much faster, much better than machine-learning algorithms, but that’s not the point,” says du Sautoy. “They are setting themselves a different target – we want to start from nothing, by being told whether you got that one wrong, that one right, whether it can build up how to do this itself. Which is fascinating.”

An AI capable of solving advanced mathematics problems could put him out of a job, says du Sautoy. “That’s my fear. It may not take too much for an AI to get maturity in this world, whereas a maturity in the musical or visual or language world might be much harder for it. So I do think my subject is vulnerable.”

However, he takes some comfort that machine learning’s general weakness in remaining coherent over a long form – such as a novel, rather than a poem – will keep mathematicians safe for now. Creating mathematical proofs, rather than solving maths problems for 16-year-olds, will be difficult for machines, he says.

Noel Sharkey at the University of Sheffield, UK, says the research is more about finding the limits of machine-learning techniques, rather than promoting advancements in mathematics.

The interesting thing, he says, will be to see how the neural networks can adapt to challenges outside of those they were trained on. “The big question is to ask how well they can generalise to novel examples that were not in the training set. This has the potential to demonstrate formal limits to what this type of learning is capable of.”

Saxton says training a neural network on maths problems could help provide AI with reasoning skills for other applications.

“Humans are good at maths, but they are using general reasoning skills that current artificial learning systems don’t possess,” he says. “If we can develop models that are good at solving these problems, then these models would likely be using general skills that would be good at solving other hard problems in AI as well.”

He hopes the work could make a small contribution towards more general mathematical AIs that could tackle things such as proving theorems.

The DeepMind team has published its data set of maths questions, and encouraged people to train their own AI.

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Adam Vaughan*


Decade-Long Struggle Over Maths Proof Could Be Decided By $1m Prize

Mathematician Shinichi Mochizuki’s Inter-universal Teichmüller theory has attracted controversy since it was published in 2012, with no one able to agree whether it is true. Now, a $1 million prize is being launched to settle the matter.

The Inter-Universal Geometry Center (IUGC) is overseeing the prize

Zen University

A prize of $1 million is being offered to anyone who can either prove or disprove an impenetrable mathematical theory, the veracity of which has been debated for over a decade.

Inter-universal Teichmüller theory (IUT) was created by Shinichi Mochizuki at Kyoto University, Japan, in a bid to solve a long-standing problem called the ABC conjecture, which focuses on the simple equation a + b = c. It suggests that if a and b are made up of large powers of prime numbers, then c isn’t usually divisible by large powers of primes.

In 2012, Mochizuki published a series of papers, running to more than 500 pages, that appeared to be a serious attempt at tackling the problem, but his dense and unusual style baffled many experts.

His apparent proof struggled to find acceptance and attracted criticism from some of the world’s most prominent mathematicians, including two who claimed in 2018 to have found a “serious, unfixable gap” in the work. Despite this, the paper was formally published in 2020, in a journal edited by Mochizuki himself. It was reported by Nature that he had nothing to do with the journal’s decision.

Since then, the theory has remained in mathematical limbo, with some people believing it to be true, but others disagreeing. Many mathematicians contacted for this story, including Mochizuki, either didn’t respond or declined to comment on the matter.

Now, the founder of Japanese telecoms and media company Dwango, Nobuo Kawakami, hopes to settle the issue by launching a cash prize for a paper that can prove – or disprove – the theory.

Two prizes are on offer. The first will see between $20,000 and $100,000 awarded annually, for the next 10 years, to the author of the best paper on IUT and related fields. The second – worth $1 million – is reserved for the mathematician who can write a paper that “shows an inherent flaw in the theory”, according to a press release.

Dwango didn’t respond to a request for interview, but during a press conference Kawakami said he hoped that his “modest reward will help increase the number of mathematicians who decide to get involved in IUT theory”.

To be eligible for the prizes, papers will need to be published in a peer-reviewed journal selected from a list compiled by the prize organisers, according to a report in The Asahi Shimbun newspaper, and Kawakami will choose the winner.

The competition is being run by the Inter-Universal Geometry Center (IUGC), which has been founded by Kawakami specifically to promote IUT, says Fumiharu Kato, director of the IUGC.

Kato says that Kawakami isn’t a mathematician, but sees IUT as a momentous part of the history of mathematics and believes that the cash prize is a “good investment” if it can finally clear up the controversy one way or the other.

“For me, IUT theory is logically simple. Of course, I mean, technically very, very hard. But logically it’s simple,” says Kato, who estimates that fewer than 10 people in the world comprehend the concept.

Kato believes that the controversy stems from the fact that Mochizuki doesn’t want to promote his theory, talk to journalists or other mathematicians about it or present the idea in a more easily digestible format, believing his work speaks for itself. Kato says that his current and former students are also reticent to do the same because they see him “as a god” in mathematics and don’t want to go against his wishes.

Because of this, most mathematicians are “at a loss” for a way to understand IUT, says Kato, who concedes that, despite earlier optimism about the idea, it is possible that the theory will eventually be disproven.

Ivan Fesenko at the University of Nottingham, UK, who is also deputy director at the IUGC, has long been a supporter of Mochizuki. He told New Scientist that there is no doubt about the correctness of IUT and that it all hinges on a deep understanding of an existing field called anabelian geometry.

“All negative public statements about the validity of IUT have been made by people who do not have proven expertise in anabelian geometry and who have zero research track record in anabelian geometry,” he says. “The new $1m IUT Challenger Prize will challenge every mathematician who has ever publicly criticised IUT to produce a paper with full proofs and get it published in a good math journal.”

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Matthew Sparkes*


Merging AI and Human Efforts to Tackle Complex Mathematical Problems

By rapidly analysing large amounts of data and making accurate predictions, artificial intelligence (AI) tools could help to answer many long-standing research questions. For instance, they could help to identify new materials to fabricate electronics or the patterns in brain activity associated with specific human behaviours.

One area in which AI has so far been rarely applied is number theory, a branch of mathematics focusing on the study of integers and arithmetic functions. Most research questions in this field are solved by human mathematicians, often years or decades after their initial introduction.

Researchers at the Israel Institute of Technology (Technion) recently set out to explore the possibility of tackling long-standing problems in number theory using state-of-the-art computational models.

In a recent paper, published in the Proceedings of the National Academy of Sciences, they demonstrated that such a computational approach can support the work of mathematicians, helping them to make new exciting discoveries.

“Computer algorithms are increasingly dominant in scientific research, a practice now broadly called ‘AI for Science,'” Rotem Elimelech and Ido Kaminer, authors of the paper, told Phys.org.

“However, in fields like number theory, advances are often attributed to creativity or human intuition. In these fields, questions can remain unresolved for hundreds of years, and while finding an answer can be as simple as discovering the correct formula, there is no clear path for doing so.”

Elimelech, Kaminer and their colleagues have been exploring the possibility that computer algorithms could automate or augment mathematical intuition. This inspired them to establish the Ramanujan Machine research group, a new collaborative effort aimed at developing algorithms to accelerate mathematical research.

Their research group for this study also included Ofir David, Carlos de la Cruz Mengual, Rotem Kalisch, Wolfram Berndt, Michael Shalyt, Mark Silberstein, and Yaron Hadad.

“On a philosophical level, our work explores the interplay between algorithms and mathematicians,” Elimelech and Kaminer explained. “Our new paper indeed shows that algorithms can provide the necessary data to inspire creative insights, leading to discoveries of new formulas and new connections between mathematical constants.”

The first objective of the recent study by Elimelech, Kaminer and their colleagues was to make new discoveries about mathematical constants. While working toward this goal, they also set out to test and promote alternative approaches for conducting research in pure mathematics.

“The ‘conservative matrix field’ is a structure analogous to the conservative vector field that every math or physics student learns about in first year of undergrad,” Elimelech and Kaminer explained. “In a conservative vector field, such as the electric field created by a charged particle, we can calculate the change in potential using line integrals.

“Similarly, in conservative matrix fields, we define a potential over a discrete space and calculate it through matrix multiplications rather than using line integrals. Traveling between two points is equivalent to calculating the change in the potential and it involves a series of matrix multiplications.”

In contrast with the conservative vector field, the so-called conservative matrix field is a new discovery. An important advantage of this structure is that it can generalize the formulas of each mathematical constant, generating infinitely many new formulas of the same kind.

“The way by which the conservative matrix field creates a formula is by traveling between two points (or actually, traveling from one point all the way to infinity inside its discrete space),” Elimelech and Kaminer said. “Finding non-trivial matrix fields that are also conservative is challenging.”

As part of their study, Elimelech, Kaminer and their colleagues used large-scale distributed computing, which entails the use of multiple interconnected nodes working together to solve complex problems. This approach allowed them to discover new rational sequences that converge to fundamental constants (i.e., formulas for these constants).

“Each sequence represents a path hidden in the conservative matrix field,” Elimelech and Kaminer explained. “From the variety of such paths, we reverse-engineered the conservative matrix field. Our algorithms were distributed using BOINC, an infrastructure for volunteer computing. We are grateful to the contribution by hundreds of users worldwide who donated computation time over the past two and a half years, making this discovery possible.”

The recent work by the research team at the Technion demonstrates that mathematicians can benefit more broadly from the use of computational tools and algorithms to provide them with a “virtual lab.” Such labs provide an opportunity to try ideas experimentally in a computer, resembling the real experiments available in physics and in other fields of science. Specifically, algorithms can carry out mathematical experiments providing formulas that can be used to formulate new mathematical hypotheses.

“Such hypotheses, or conjectures, are what drives mathematical research forward,” Elimelech and Kaminer said. “The more examples supporting a hypothesis, the stronger it becomes, increasing the likelihood to be correct. Algorithms can also discover anomalies, pointing to phenomena that are the building-blocks for new hypotheses. Such discoveries would not be possible without large-scale mathematical experiments that use distributed computing.”

Another interesting aspect of this recent study is that it demonstrates the advantages of building communities to tackle problems. In fact, the researchers published their code online from their project’s early days and relied on contributions by a large network of volunteers.

“Our study shows that scientific research can be conducted without exclusive access to supercomputers, taking a substantial step toward the democratization of scientific research,” Elimelech and Kaminer said. “We regularly post unproven hypotheses generated by our algorithms, challenging other math enthusiasts to try proving these hypotheses, which when validated are posted on our project website. This happened on several occasions so far. One of the community contributors, Wolfgang Berndt, got so involved that he is now part of our core team and a co-author on the paper.”

The collaborative and open nature of this study allowed Elimelech, Kaminer and the rest of the team to establish new collaborations with other mathematicians worldwide. In addition, their work attracted the interest of some children and young people, showing them how algorithms and mathematics can be combined in fascinating ways.

In their next studies, the researchers plan to further develop the theory of conservative matrix fields. These matrix fields are a highly powerful tool for generating irrationality proofs for fundamental constants, which Elimelech, Kaminer and the team plan to continue experimenting with.

“Our current aim is to address questions regarding the irrationality of famous constants whose irrationality is unknown, sometimes remaining an open question for over a hundred years, like in the case of the Catalan constant,” Elimelech and Kaminer said.

“Another example is the Riemann zeta function, central in number theory, with its zeros at the heart of the Riemann hypothesis, which is perhaps the most important unsolved problem in pure mathematics. There are many open questions about the values of this function, including the irrationality of its values. Specifically, whether ζ(5) is irrational is an open question that attracts the efforts of great mathematicians.”

The ultimate goal of this team of researchers is to successfully use their experimental mathematics approach to prove the irrationality of one of these constants. In the future, they also hope to systematically apply their approach to a broader range of problems in mathematics and physics. Their physics-inspired hands-on research style arises from the interdisciplinary nature of the team, which combines people specialized in CS, EE, math, and physics.

“Our Ramanujan Machine group can help other researchers create search algorithms for their important problems and then use distributed computing to search over large spaces that cannot be attempted otherwise,” Elimelech and Kaminer added. “Each such algorithm, if successful, will help point to new phenomena and eventually new hypotheses in mathematics, helping to choose promising research directions. We are now considering pushing forward this strategy by setting up a virtual user facility for experimental mathematics,” inspired by the long history and impact of user facilities for experimental physics.

For more insights like this, visit our website at www.international-maths-challenge.com.

Credit of the article given to Ingrid Fadelli , Phys.org