For all the students wondering why they would ever need to use the Pythagorean theorem, Katie Steckles is delighted to report on a real-world encounter.

Recently, I was building a flat-pack wardrobe when I noticed something odd in the instructions. Before you assembled the wardrobe, they said, you needed to measure the height of the ceiling in the room you were going to put it in. If it was less than 244 centimetres high, there was a different set of directions to follow.

These separate instructions asked you to build the wardrobe in a vertical orientation, holding the side panels upright while you attached them to the base. The first set of directions gave you a much easier job, building the wardrobe flat on the floor before lifting it up into place. I was intrigued by the value of 244 cm: this wasn’t the same as the height of the wardrobe, or any other dimension on the package, and I briefly wondered where that number had come from. Then I realised: Pythagoras.

The wardrobe was 236 cm high and 60 cm deep. Looking at it side-on, the length of the diagonal line from corner to corner can be calculated using Pythagoras’s theorem. The vertical and horizontal sides meet at a right angle, meaning if we square the length of each then add them together, we get the well-known “square of the hypotenuse”. Taking the square root of this number gives the length of the diagonal.

In this case, we get a diagonal length a shade under 244 cm. If you wanted to build the wardrobe flat and then stand it up, you would need that full diagonal length to fit between the floor and the ceiling to make sure it wouldn’t crash into the ceiling as it swung past – so 244 cm is the safe ceiling height. It is a victory for maths in the real world, and vindication for maths teachers everywhere being asked, “When am I going to use this?”

This isn’t the only way we can connect Pythagoras to daily tasks. If you have ever needed to construct something that is a right angle – like a corner in joinery, or when laying out cones to delineate the boundaries of a sports pitch – you can use the Pythagorean theorem in reverse. This takes advantage of the fact that a right-angled triangle with sides of length 3 and 4 has a hypotenuse of 5 – a so-called 3-4-5 triangle.

If you measure 3 units along one side from the corner, and 4 along the other, and join them with a diagonal, the diagonal’s length will be precisely 5 units, if the corner is an exact right angle. Ancient cultures used loops of string with knots spaced 3, 4 and 5 units apart – when held out in a triangle shape, with a knot at each vertex, they would have a right angle at one corner. This technique is still used as a spot check by builders today.

Engineers, artists and scientists might use geometrical thinking all the time, but my satisfaction in building a wardrobe, and finding the maths checked out perfectly, is hard to beat.

*Katie Steckles is a mathematician, lecturer, YouTuber and author based in Manchester, UK. She is also puzzle adviser for New Scientist’s puzzle column, BrainTwister. Follow her @stecks*

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to **Peter Rowlett***