Why expanding access to algebra is a matter of civil rights

Bob Moses, who helped register Black residents to vote in Mississippi during the Civil Rights Movement, believed civil rights went beyond the ballot box. To Moses, who was a teacher as well as an activist, math literacy is a civil right: a requirement to earning a living wage in modern society. In 1982, he founded the Algebra Project to ensure that “students at the bottom get the math literacy they need.”

As a researcher who studies ways to improve the math experiences of students, WEbelieve a new approach that expands access to algebra may help more students get the math literacy Moses, who died in 2021, viewed as so important. It’s a goal districts have long been struggling to meet.

Efforts to improve student achievement in algebra have been taking place for decades. Unfortunately, the math pipeline in the United States is fraught with persistent opportunity gaps. According to the Nation’s Report Card – a congressionally mandated project administered by the Department of Education – in 2022 only 29% of U.S. fourth graders and 20% of U.S. eighth graders were proficient in math. Low-income students, students of color and multilingual learners, who tend to have lower scoreson math assessments, often do not have the same access as others to qualified teachers, high-quality curriculum and well-resourced classrooms.

A new approach

The Dallas Independent School District – or Dallas ISD – is gaining national attention for increasing opportunities to learn by raising expectations for all students. Following in the footsteps of more than 60 districts in the state of Washington, in 2019 the Dallas ISD implemented an innovative approach of having students be automatically enrolled rather than opt in to honours math in middle school.

Under an opt-in policy, students need a parent or teacher recommendation to take honours math in middle school and Algebra 1 in eighth grade. That policy led both to low enrollment and very little diversity in honours math. Some parents, especially those who are Black or Latino, were not aware how to enroll their students in advanced classes due to a lack of communication in many districts.

In addition, implicit bias, which exists in all demographic groups, may influence teachers’ perceptions of the behaviour and academic potential of students, and therefore their subsequent recommendations. Public school teachers in the U.S. are far less racially and ethnically diverse than the students they serve.

Dallas ISD’s policy overhaul aimed to foster inclusivity and bridge educational gaps among students. Through this initiative, every middle school student, regardless of background, was enrolled in honours math, the pathway that leads to taking Algebra 1 in eighth grade, unless they opted out.

Flipping the switch from opt-in to opt-out led to a dramatic increase in the number of Black and Latino learners, who constitute the majority of Dallas students. And the district’s overall math scores remained steady. About 60% of Dallas ISD eighth graders are now taking Algebra 1, triple the prior level. Moreover, more than 90% are passing the state exam.

Civil rights activist Bob Moses believed math literacy was critical for students to be able to make a living. Robert Elfstrom/Villon Films via Getty Images

Efforts spread

Other cities are taking notice of the effects of Dallas ISD’s shifting policy. The San Francisco Unified School District, for example, announced plans in February 2024 to implement Algebra 1 in eighth grade in all schools by the 2026-27 school year.

In fall 2024, the district will pilot three programs to offer Algebra 1 in eighth grade. The pilots range from an opt-out program for all eighth graders – with extra support for students who are not proficient – to a program that automatically enrolls proficient students in Algebra 1, offered as an extra math class during the school day. Students who are not proficient can choose to opt in.

Nationwide, however, districts that enroll all students in Algebra 1 and allow them to opt out are still in the minority. And some stopped offering eighth grade Algebra 1 entirely, leaving students with only pre-algebra classes. Cambridge, Massachusetts – the city in which Bob Moses founded the Algebra Project – is among them.

Equity concerns linger

Between 2017 and 2019, district leaders in the Cambridge Public Schools phased out the practice of placing middle school students into “accelerated” or “grade-level” math classes. Few middle schools in the district now offer Algebra 1 in eighth grade.

The policy shift, designed to improve overall educational outcomes, was driven by concerns over significant racial disparities in advanced math enrollment in high school. Completion of Algebra 1 in eighth grade allows students to climb the math ladder to more difficult classes, like calculus, in high school. In Cambridge, the students who took eighth grade Algebra 1 were primarily white and Asian; Black and Latino students enrolled, for the most part, in grade-level math.

Some families and educators contend that the district’s decision made access to advanced math classes even more inequitable. Now, advanced math in high school is more likely to be restricted to students whose parents can afford to help them prepare with private lessons, after-school programs or private schooling, they said.

While the district has tried to improve access to advanced math in high school by offering a free online summer program for incoming ninth graders, achievement gaps have remained persistently wide.

Perhaps striking a balance between top-down policy and bottom-up support will help schools across the U.S. realize the vision Moses dreamed of in 1982 when he founded the Algebra Project: “That in the 21st century every child has a civil right to secure math literacy – the ability to read, write and reason with the symbol systems of mathematics.”

For more such insights, log into our website https://international-maths-challenge.com

Credit of the article given to Liza Bondurant, The Conversation


Mathematicians Find Odd Shapes That Roll Like A Wheel In Any Dimension

Not content with shapes in two or three dimensions, mathematicians like to explore objects in any number of spatial dimensions. Now they have discovered shapes of constant width in any dimension, which roll like a wheel despite not being round.

A 3D shape of constant width as seen from three different angles. The middle view resembles a 2D Reuleaux triangle

Mathematicians have reinvented the wheel with the discovery of shapes that can roll smoothly when sandwiched between two surfaces, even in four, five or any higher number of spatial dimensions. The finding answers a question that researchers have been puzzling over for decades.

Such objects are known as shapes of constant width, and the most familiar in two and three dimensions are the circle and the sphere. These aren’t the only such shapes, however. One example is the Reuleaux triangle, which is a triangle with curved edges, while people in the UK are used to handling equilateral curve heptagons, otherwise known as the shape of the 20 and 50 pence coins. In this case, being of constant width allows them to roll inside coin-operated machines and be recognised regardless of their orientation.

Crucially, all of these shapes have a smaller area or volume than a circle or sphere of the equivalent width – but, until now, it wasn’t known if the same could be true in higher dimensions. The question was first posed in 1988 by mathematician Oded Schramm, who asked whether constant-width objects smaller than a higher-dimensional sphere might exist.

While shapes with more than three dimensions are impossible to visualise, mathematicians can define them by extending 2D and 3D shapes in logical ways. For example, just as a circle or a sphere is the set of points that sits at a constant distance from a central point, the same is true in higher dimensions. “Sometimes the most fascinating phenomena are discovered when you look at higher and higher dimensions,” says Gil Kalai at the Hebrew University of Jerusalem in Israel.

Now, Andrii Arman at the University of Manitoba in Canada and his colleagues have answered Schramm’s question and found a set of constant-width shapes, in any dimension, that are indeed smaller than an equivalent dimensional sphere.

Arman and his colleagues had been working on the problem for several years in weekly meetings, trying to come up with a way to construct these shapes before they struck upon a solution. “You could say we exhausted this problem until it gave up,” he says.

The first part of the proof involves considering a sphere with n dimensions and then dividing it into 2n equal parts – so four parts for a circle, eight for a 3D sphere, 16 for a 4D sphere and so on. The researchers then mathematically stretch and squeeze these segments to alter their shape without changing their width. “The recipe is very simple, but we understood that only after all of our elaboration,” says team member Andriy Bondarenko at the Norwegian University of Science and Technology.

The team proved that it is always possible to do this distortion in such a way that you end up with a shape that has a volume at most 0.9n times that of the equivalent dimensional sphere. This means that as you move to higher and higher dimensions, the shape of constant width gets proportionally smaller and smaller compared with the sphere.

Visualising this is difficult, but one trick is to imagine the lower-dimensional silhouette of a higher-dimensional object. When viewed at certain angles, the 3D shape appears as a 2D Reuleaux triangle (see the middle image above). In the same way, the 3D shape can be seen as a “shadow” of the 4D one, and so on.  “The shapes in higher dimensions will be in a certain sense similar, but will grow in complexity as [the] dimension grows,” says Arman.

Having identified these shapes, mathematicians now hope to study them further. “Even with the new result, which takes away some of the mystery about them, they are very mysterious sets in high dimensions,” says Kalai.

For more such insights, log into www.international-maths-challenge.com.

*Credit for article given to Alex Wilkins*