Why prime numbers still fascinate mathematicians, 2,300 years later

Primes still have the power to surprise. Chris-LiveLoveClick/shutterstock.com

On March 20, American-Canadian mathematician Robert Langlands received the Abel Prize, celebrating lifetime achievement in mathematics. Langlands’ research demonstrated how concepts from geometry, algebra and analysis could be brought together by a common link to prime numbers.

When the King of Norway presents the award to Langlands in May, he will honor the latest in a 2,300-year effort to understand prime numbers, arguably the biggest and oldest data set in mathematics.

As a mathematician devoted to this “Langlands program,” I’m fascinated by the history of prime numbers and how recent advances tease out their secrets. Why they have captivated mathematicians for millennia?

How to find primes

To study primes, mathematicians strain whole numbers through one virtual mesh after another until only primes remain. This sieving process produced tables of millions of primes in the 1800s. It allows today’s computers to find billions of primes in less than a second. But the core idea of the sieve has not changed in over 2,000 years.

“A prime number is that which is measured by the unit alone,” mathematician Euclid wrote in 300 B.C. This means that prime numbers can’t be evenly divided by any smaller number except 1. By convention, mathematicians don’t count 1 itself as a prime number.

Euclid proved the infinitude of primes – they go on forever – but history suggests it was Eratosthenes who gave us the sieve to quickly list the primes.

 

Here’s the idea of the sieve. First, filter out multiples of 2, then 3, then 5, then 7 – the first four primes. If you do this with all numbers from 2 to 100, only prime numbers will remain.

With eight filtering steps, one can isolate the primes up to 400. With 168 filtering steps, one can isolate the primes up to 1 million. That’s the power of the sieve of Eratosthenes.

Tables and tables

An early figure in tabulating primes is John Pell, an English mathematician who dedicated himself to creating tables of useful numbers. He was motivated to solve ancient arithmetic problems of Diophantos, but also by a personal quest to organize mathematical truths. Thanks to his efforts, the primes up to 100,000 were widely circulated by the early 1700s. By 1800, independent projects had tabulated the primes up to 1 million.

To automate the tedious sieving steps, a German mathematician named Carl Friedrich Hindenburg used adjustable sliders to stamp out multiples across a whole page of a table at once. Another low-tech but effective approach used stencils to locate the multiples. By the mid-1800s, mathematician Jakob Kulik had embarked on an ambitious project to find all the primes up to 100 million.

This “big data” of the 1800s might have only served as reference table, if Carl Friedrich Gauss hadn’t decided to analyze the primes for their own sake. Armed with a list of primes up to 3 million, Gauss began counting them, one “chiliad,” or group of 1000 units, at a time. He counted the primes up to 1,000, then the primes between 1,000 and 2,000, then between 2,000 and 3,000 and so on.

Gauss discovered that, as he counted higher, the primes gradually become less frequent according to an “inverse-log” law. Gauss’s law doesn’t show exactly how many primes there are, but it gives a pretty good estimate. For example, his law predicts 72 primes between 1,000,000 and 1,001,000. The correct count is 75 primes, about a 4 percent error.

A century after Gauss’ first explorations, his law was proved in the “prime number theorem.” The percent error approaches zero at bigger and bigger ranges of primes. The Riemann hypothesis, a million-dollar prize problem today, also describes how accurate Gauss’ estimate really is.

The prime number theorem and Riemann hypothesis get the attention and the money, but both followed up on earlier, less glamorous data analysis.

Modern prime mysteries

Today, our data sets come from computer programs rather than hand-cut stencils, but mathematicians are still finding new patterns in primes.

Except for 2 and 5, all prime numbers end in the digit 1, 3, 7 or 9. In the 1800s, it was proven that these possible last digits are equally frequent. In other words, if you look at the primes up to a million, about 25 percent end in 1, 25 percent end in 3, 25 percent end in 7, and 25 percent end in 9.

A few years ago, Stanford number theorists Robert Lemke Oliver and Kannan Soundararajan were caught off guard by quirks in the final digits of primes. An experiment looked at the last digit of a prime, as well as the last digit of the very next prime. For example, the next prime after 23 is 29: One sees a 3 and then a 9 in their last digits. Does one see 3 then 9 more often than 3 then 7, among the last digits of primes?

Frequency of last-digit pairs, among successive prime numbers up to 100 million. Matching colors correspond to matching gaps. M.H. Weissman, CC BY

Number theorists expected some variation, but what they found far exceeded expectations. Primes are separated by different gaps; for example, 23 is six numbers away from 29. But 3-then-9 primes like 23 and 29 are far more common than 7-then-3 primes, even though both come from a gap of six.

Mathematicians soon found a plausible explanation. But, when it comes to the study of successive primes, mathematicians are (mostly) limited to data analysis and persuasion. Proofs – mathematicians’ gold standard for explaining why things are true – seem decades away.

For more insights like this, visit our website at www.international-maths-challenge.com.
Credit of the article given to Martin H. Weissman


Measure Earth’s Circumference with a Shadow

Credit: The earth is massive, but you don’t need a massive ruler to measure its size. All you need are a few household items–and little bit of geometry! George Retseck

A geometry science project from Science Buddies

Introduction
If you wanted to measure the circumference of Earth, how long would your tape measure have to be? Would you need to walk the whole way around the world to find the answer? Do you think you can do it with just a meterstick in one location? Try this project to find out!

Before you begin, however, it is important to note this project will only work within about two weeks of either the spring or fall equinoxes (usually around March 20 and September 23, respectively).

Background
What is Earth’s circumference? In the age of modern technology this may seem like an easy question for scientists to answer with tools such as satellites and GPS—and it would be even easier for you to look up the answer online. It might seem like it would be impossible for you to measure the circumference of our planet using only a meterstick. The Greek mathematician Eratosthenes, however, was able to estimate Earth’s circumference more than 2,000 years ago, without the aid of any modern technology. How? He used a little knowledge about geometry!

At the time Eratosthenes was in the city of Alexandria in Egypt. He read that in a city named Syene south of Alexandria, on a particular day of the year at noon, the sun’s reflection was visible at the bottom of a deep well. This meant the sun had to be directly overhead. (Another way to think about this is that perfectly vertical objects would cast no shadow.) On that same day in Alexandria a vertical object did cast a shadow. Using geometry, he calculated the circumference of Earth based on a few things that he knew (and one he didn’t):

  • He knew there are 360 degrees in a circle.
  • He could measure the angle of the shadow cast by a tall object in Alexandria.
  • He knew the overland distance between Alexandria and Syene. (The two cities were close enough that the distance could be measured on foot.)
  • The only unknown in the equation is the circumference of Earth!

The resulting equation was:

Angle of shadow in Alexandria / 360 degrees = Distance between Alexandria and Syene / Circumference of Earth

In this project you will do this calculation yourself by measuring the angle formed by a meterstick’s shadow at your location. You will need to do the test near the fall or spring equinoxes, when the sun is directly overhead at Earth’s equator. Then you can look up the distance between your city and the equator and use the same equation Eratosthenes used to calculate Earth’s circumference. How close do you think your result will be to the “real” value?

There is a geometric rule about the angles formed by a line that intersects two parallel lines. Eratosthenes assumed the sun was far enough away from our planet that its rays were effectively parallel when they arrived at Earth. This told him the angle of the shadow he measured in Alexandria was equal to the angle between Alexandria and Syene, measured at Earth’s center. If this sounds confusing, don’t worry! It is much easier to visualize with a picture. See the references in the “More to explore” section for some helpful diagrams and a more detailed explanation of the geometry involved.

Materials

  • Sunny day on or near the spring or fall equinoxes (about March 20 or September 23, respectively)
  • Flat, level ground that will be in direct sunlight around noon
  • Meterstick
  • Volunteer to help hold the meterstick while you take measurements (Or, if you are doing the test alone, you can use a bucket of sand or dirt to insert one end of the meter stick to hold it upright.)
  • Stick or rock to mark the location of the shadow
  • Calculator
  • Protractor
  • Long piece of string
  • Optional: plumb bob (you can make one by tying a small weight to the end of a string) or post level to make sure the meter stick is vertical

Preparation

  • Look at your local weather forecast a few days in advance and pick a day where it looks like it will be mostly sunny around noon. (You have a window of several weeks to do this project, so don’t get discouraged if it turns out to be cloudy! You can try again.)
  • Look up the sunrise and sunset times for that day in your local newspaper or on a calendar, weather or astronomy Web site. You will need to calculate “solar noon,” the time exactly halfway between sunrise and sunset, which is when the sun will be directly overhead. This will probably not be exactly 12 o’clock noon.
  • Go outside and set up for your materials about 10 minutes before solar noon so you have everything ready.

Procedure

  • Set up your meter stick vertically, outside in a sunny spot just before solar noon.
  • If you have a volunteer to help, have them hold the meterstick. Otherwise, bury one end of the meterstick in a bucket of sand or dirt so it stays upright.
  • If you have a post level or plumb bob, use it to make sure the meterstick is perfectly vertical. Otherwise, do your best to eyeball it.
  • At solar noon, mark the end of the meterstick’s shadow on the ground with a stick or a rock.
  • Draw an imaginary line between the top of the meterstick and the tip of its shadow. Your goal is to measure the angle between this line and the meterstick. Have your volunteer stretch a piece of string between the top of the meterstick and the end of its shadow.
  • Use a protractor to measure the angle between the string and the meterstick in degrees. Write this angle down.
  • Look up the distance between your city and the equator.
  • Calculate the circumference of the Earth using this equation:

Circumference = 360 x distance between your city and the equator / angle of shadow that you measured

  • What value do you get? How close is your answer to the true circumference of Earth (see “Observations and results” section)?
  • Extra: Try repeating your test on different days before, on and after the equinox; or at different times before, at and after solar noon. How much does the accuracy of your answer change?
  • Extra: Ask a friend or family member in a different city to try the test on the same day and compare your results. Do you get the same answer?

Observations and results
In 200 B.C. Eratosthenes estimated Earth’s circumference at about 46,250 kilometers (28,735 miles). Today we know our planet’s circumference is roughly 40,000 kilometers (24,850 miles). Not bad for a more than 2,000-year-old estimate made with no modern technology! Depending on the error in your measurements—such as the exact day and time you did the test, how accurately you were able to measure the angle or length of the shadow and how accurately you measured the distance between your city and the equator—you should be able to calculate a value fairly close to 40,000 kilometers (within a few hundred or maybe a few thousand). All without leaving your own backyard!

For more insights like this, visit our website at www.international-maths-challenge.com.

Credit of the article given to Science Buddies & Ben Finio